
Application of Built-In-Testing in Component-Based Embedded
Systems ∗

Irena Pavlova
Faculty of Math. and Informatics

Sofia University
Sofia,Bulgaria

i pavlova@gbg.bg

Mikael Åkerholm
CC-Systems, and Mälardalen

University
Västerås, Sweden

mikael.akerholm@cc-
systems.se

Johan Fredriksson
Mälardalen University

Västerås, Sweden

johan.fredriksson@mdh.se

Abstract

This work-in-progress paper discusses challenges with application
of Built-In Testing (BIT) in component-based embedded-systems.
Testing constitutes a large part of the time and budget in devel-
opment of embedded software systems. Such systems are often
mission-critical, making testing highly important, and atthe same
time testing em-bedded systems is challenging because of their lim-
ited observability. We investigate the possible application of BIT
in components for embedded systems, as a technique to advance
the technology and knowledge for analysis and verification of func-
tional correctness, real-time behavior, safety, and reliability of these
systems.

1 Introduction

Component-Based Software Engineering (CBSE) is known as the
discipline of assembling new software systems by reuse of exist-
ing components, which should imply reduced development costs.
Ideally every component corresponds exactly according to aspec-
ification that contains no questions of interpretation, andbehaves
exactly the same in any environment it is deployed. However,this
ideal picture is often not the case, specifications may be ambigous,
components may contain bugs and the bahaviour may vary in dif-
ferent contexts. This forces the execution of lengthy and costly re-
verification activities directly undermining the benefits of reusing
the design and implementation efforts put into a component.Fur-
thermore, most embedded systems have additional requirements not
present in other systems, e.g., timeliness, low footprint,low energy
consumption, etc. Suchextra-functional propertiesalso needs to be
verified, adding even more (re-)testing needs to the system [4, 1].

To improve the overall benefits with reusing components we aim to
investigate the application of Built-In Testing (BIT) in component-
based embedded-systems. By developing a methodology for inte-
grating BIT into COTS software, COMPONENT+ project has de-
livered a significant step on widening the application of self-test
techniques for component-based software [3]. The proposedap-
proach draws attention to built-test mechanism into components
during design and coding, so that the successive testing andmainte-

∗Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial ad-
vantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
Copyright 2006 ACM ISBN 1-59593-459-6...$5.00

nance processes can be simplified. The results of the projectprove
that BIT application in the overall software process, enforcing test-
ing and integration consideration from the very early stages of the
development, help to build more reliable testing environments and
support the realization of more comprehensive testing.

In the follwing section we give concrete forms of these areas
through the presentation of a number of reserach quetsions,fore
a more detailed presentation of these questions refer to [2].

2 Tailoring BIT for embedded systems
Different test methods have been used in software development
for several decades. Practice has shown that standard testing tech-
niques are inefficient for component based systems; especially for
dynamic, reconfigurable and evolvable architectures like embedded
software, where testing should be able to handle domain specific
issues and should be committed with and complement to different
types of analyses. Moving from traditional testing techniques to
BIT in the specific domain of embedded systems presumes a lot
of challenges and in the following section we try to identifythem
through the presentation of a number of research questions.

Q1: What is the benefit of BIT compared to standard testing?

A characterizing property of many embedded systems is that they
are mission critical, e.g., control systems in vehicles, power plants
and industrial automation equipment. In some systems faults may
cause human injury, in others loss of money. Thus, to increase un-
derstanding, analysability and testability of systems, simplicity and
static solutions is prioritised in many design decisions. To gain ac-
ceptance for BIT techniques it is important to find a positiveanswer
to the question:

Q2: Can BIT techniques be applied with a net gain of verifiability?

It can be deemed practically impossible to include more functional-
ity in a system without raising the complexity, and introducing BIT
implies including more functionality. However, BIT techniques are
supposed to increase testability. For a successful introduction of
BIT techniques, an integration of techniques that clearly do the
right prioritisation in the tradeoffs between the increased testabil-
ity offered by BIT vs. the possible problems with decreased un-
derstanding, analysability, and testability. The embedded systems
industry is generally interested in applying more analysisand for-
mal methods for verification. However, because of the complexity
in using these methods combined with scalability problems to deal
with problems of industry size, the use is limited. A relevant ques-
tion is:

Q3: How can BIT facilitate analysis?

Real-time aspects is one of the major differences between embed-
ded software and PC or internet software. Embedded softwaresys-
tems often interact and controls physical processes with real-time
requirements. Timing is often of first priority in testing efforts. To
use BIT in embedded real-time systems it is important to under-
stand the relation between the two. Hence we form the question:

Q4: Can BIT techniques be used to test timing, e.g., worst-case
response-time and jitter?

Testing worst-case response-time is not trivial. Typically, tests as-
sess within what time the embedded system reacts (creates anout-
put considering an input). The assessed time forms an end-to-end
latency for the response. Internally, the system typicallyinvolves
transactions of several execution threads that must cooperate to cre-
ate the correct output. These threads can in turn experienceinter-
ference from other parallel activities in the system. Thus,the goal
for the test is to measure the time from a certain change in theinput
until a certain output is produced under maximum disturbance from
other parallel activities. These techniques not only have to set up
a worst-case scenario (which is challenging in itself), butalso have
to measure the system non-intrusively, i.e., make sure thatthe mea-
surement does not affect the test (probe-effects). It is often difficult
to prove that removing test probes from the code has no side effects.
A solution sometimes used in standard testing is to leave test probes
in the code even after deployment. It is controversial sinceresource
consumption should be kept at a minimum. Thus we form the next
question considering this:

Q5: Can BIT be removed at deployment time without side effects?

Another distinguishing characteristic in many embedded systems is
that they are resource constrained. They are often producedin large
volumes, and it is economically beneficial to spend development-
time on using techniques that uses a minimum of hardware re-
sources (e.g., processor, network, and memory). The next question
is related to these issues:

Q6: How much extra hardware resources are required for integrat-
ing BIT techniques?

Analysis, when applied, is often used in early phases; whiletesting
in used in the later phases to verify that the system behaves ac-
cording to analysis and specifications. Analysis could possibly be
developed to identify the most critical points to be tested in order to
create and integrate the proper Built-in mechanisms. The other way
around is another interesting possibility, can BIT mechanisms be
utilised to get a more precise models of actual systems properties?

BIT may have positive “side-effects” on software quality; one of
these possibilities is assed in the following question:

Q7: Can testing concerns early in the development process, as en-
forced by BIT, affect positively on software quality?

Consideration of test issues early in the projects may increase qual-
ity, e.g., it leads to earlier detection of incomplete specifications. It
would also be interesting to try to measure the impact of BIT on
quality in other phases of development. Reuse is a basic concept in
CBSE that promises to decrease development times. Reuse hasstill
not been widely used, especially in the embedded systems segment;
the reasons are many, but one of them may be the lack of test sup-
port in the reuse mechanism. Naturally, the first question onreuse
and BIT is:

Q8: Does BIT facilitate component reuse in embedded component-

based systems?

BIT may shorten the development-time through shorter verification
time. This is perhaps only valid when tests or test results are reused,
e.g., upon regression tests after maintenance or when a component
is used in a new application. It might be a higher investment to
develop a reusable BIT compared to standard tests, this investment
must pay off when the component is touched next time. An inter-
esting question here is:

Q9: To what extent is it possible to reuse the tests and test results
themselves?

It is well-known that test-related activities constitute alarge part
of the total development time for software. Therefore reuseof test
cases, and when possible even test results, is as important as reuse
of the software itself. Otherwise the effect from reuse on the total
development time will be minor. However in order to rely on reused
test cases or test results, it must be ensured that the reusedentity is
compatible with the intended context for the component. Experi-
ence has shown that software reuse in new contexts is dangerous.
It is mandatory that test-results and test suites that are possible to
reuse are distinguished from those that must be changed.

From a pragmatic view it may be too difficult to achieve component
reuse in industrial software projects, at least in a short perspective.
There may be benefits in terms of shortening the total development-
time even if components are not reused. Such benefits would origi-
nate from from increased quality and earlier detection of specifica-
tion faults. Hence, the last question is formed:

Q10: Can testing concerns early in the development process,as
enforced by BIT, shorten development-times?

The key research areas that we have defined based on the above
questions can be summarized in the following list:

• Suitable BIT techniques for testing embedded systems
• Integration of BIT techniques that do not change system be-

haviour or raise complexity
• Resource aware BIT techniques for highly resource con-

strained systems
• Built-in analysis techinques, especially for timing properties
• Synergies between analysis and BIT
• Safe methods to enable reusing of tests and test results

Our expectation is that a careful integration of BIT techniques in
the context of CBSE for embedded systems has high potential to
improve the quality of the software and shorten the development-
time, compared to traditional non-component based development
and component-based development.

3 References

[1] I. Crnkovic and M. Larsson.Building Reliable Component-
Based Software Systems. Artech House publisher, 2002. ISBN
1-58053-327-2.

[2] M. Åkerholm, I. Pavlova, and J. Fredriksson. Application of
built-in-testing in component-based embedded systems. Tech-
nical report, Technical report, Malardalen university, May
2006. http://www.mrtc.mdh.se/publications/1125.pdf.

[3] C. E. F. Project, 2006. http://www.component-plus.org.

[4] W. Wolf. What is embedded computing?IEEE Computer,
35(1):136–137, January 2002.

