Application of Built-In-Testing in

Component-Based Embedded

Systems ¥

Irena Pavlova
Faculty of Math. and Informatics
Sofia University
Sofia,Bulgaria

i_ pavlova@gbg.bg

Mikael Akerholm
CC-Systems, and Malardalen
University
Vasteras, Sweden

mikael.akerholm@cc-

Johan Fredriksson
Malardalen University
Vasteras, Sweden

johan.fredriksson@madh.se

systems.se

Abstract

This work-in-progress paper discusses challenges withicapipn

of Built-In Testing (BIT) in component-based embeddedays.
Testing constitutes a large part of the time and budget ireldev
opment of embedded software systems. Such systems are ofte
mission-critical, making testing highly important, andtla¢ same
time testing em-bedded systems is challenging becauseiofith-

ited observability. We investigate the possible applaatf BIT

in components for embedded systems, as a technique to alvanc

the technology and knowledge for analysis and verificatidorc-
tional correctness, real-time behavior, safety, andlitig of these
systems.

1 Introduction

Component-Based Software Engineering (CBSE) is known s th
discipline of assembling new software systems by reuse isf-ex
ing components, which should imply reduced developmentscos
Ideally every component corresponds exactly accordingspe&-
ification that contains no questions of interpretation, hetiaves
exactly the same in any environment it is deployed. Howewés,
ideal picture is often not the case, specifications may bdagoub,
components may contain bugs and the bahaviour may vary-n dif
ferent contexts. This forces the execution of lengthy arsllgoe-
verification activities directly undermining the benefifsreusing
the design and implementation efforts put into a componEnt-
thermore, most embedded systems have additional requitemet
present in other systems, e.g., timeliness, low footplamt,energy
consumption, etc. Suaxtra-functional propertiealso needs to be
verified, adding even more (re-)testing needs to the systet] .

To improve the overall benefits with reusing components wetai
investigate the application of Built-In Testing (BIT) inmponent-
based embedded-systems. By developing a methodologytésr in
grating BIT into COTS software, COMPONENT+ project has de-
livered a significant step on widening the application of-sett
techniques for component-based software [3]. The propaged
proach draws attention to built-test mechanism into corepth
during design and coding, so that the successive testinghainde-

*Permission to make digital or hard copies of all or part o thi
work for personal or classroom use is granted without fegigeal
that copies are not made or distributed for profit or comnad auil-
vantage and that copies bear this notice and the full citatiothe
first page. To copy otherwise, to republish, to post on sereeto
redistribute to lists, requires prior specific permissiod/ar a fee.
Copyright 2006 ACM ISBN 1-59593-459-6...$5.00

nance processes can be simplified. The results of the prujeot
that BIT application in the overall software process, ecifty test-
ing and integration consideration from the very early stagfethe
development, help to build more reliable testing environteend
support the realization of more comprehensive testing.

"n the follwing section we give concrete forms of these areas

through the presentation of a number of reserach quetsfores,
a more detailed presentation of these questions refer to [2]

2 Tailoring BIT for embedded systems

Different test methods have been used in software developme
for several decades. Practice has shown that standanaigtésth-
niques are inefficient for component based systems; edlyeitia
dynamic, reconfigurable and evolvable architectures likbedded
software, where testing should be able to handle domainifgpec
issues and should be committed with and complement to differ
types of analyses. Moving from traditional testing teclueis| to

BIT in the specific domain of embedded systems presumes a lot
of challenges and in the following section we try to identifiem
through the presentation of a number of research questions.

Q1: What is the benefit of BIT compared to standard testing?

A characterizing property of many embedded systems is tlest t
are mission critical, e.g., control systems in vehiclesygroplants
and industrial automation equipment. In some systemssfauity
cause human injury, in others loss of money. Thus, to inereas
derstanding, analysability and testability of systemspdicity and
static solutions is prioritised in many design decisions g&in ac-
ceptance for BIT techniques it is important to find a positimswer
to the question:

Q2: Can BIT techniques be applied with a net gain of verifig/#l

It can be deemed practically impossible to include moretfonal-
ity in a system without raising the complexity, and introuhgcBIT
implies including more functionality. However, BIT teclyuies are
supposed to increase testability. For a successful inttaau of
BIT techniques, an integration of techniques that cleadytlie
right prioritisation in the tradeoffs between the increhgestabil-
ity offered by BIT vs. the possible problems with decreased u
derstanding, analysability, and testability. The embeddslestems
industry is generally interested in applying more analgsid for-
mal methods for verification. However, because of the corityle
in using these methods combined with scalability probleordeial
with problems of industry size, the use is limited. A relevgues-
tion is:



Q3: How can BIT facilitate analysis?

Real-time aspects is one of the major differences betwediedm
ded software and PC or internet software. Embedded softsyare
tems often interact and controls physical processes withtiae
requirements. Timing is often of first priority in testindats. To
use BIT in embedded real-time systems it is important to unde
stand the relation between the two. Hence we form the guestio

Q4: Can BIT technigues be used to test timing, e.g., worsé-ca
response-time and jitter?

Testing worst-case response-time is not trivial. Typicaksts as-
sess within what time the embedded system reacts (creatag-an
put considering an input). The assessed time forms an eadeo
latency for the response. Internally, the system typiciaiylves
transactions of several execution threads that must catepter cre-
ate the correct output. These threads can in turn experiatse
ference from other parallel activities in the system. Thhs,goal
for the test is to measure the time from a certain change imphe
until a certain output is produced under maximum disturbdram
other parallel activities. These techniques not only haveet up
a worst-case scenario (which is challenging in itself),ddsb have
to measure the system non-intrusively, i.e., make surghbahea-
surement does not affect the test (probe-effects). It enddifficult
to prove that removing test probes from the code has no dieetef
A solution sometimes used in standard testing is to leat@tebes
in the code even after deployment. It is controversial sieseurce
consumption should be kept at a minimum. Thus we form the next
guestion considering this:

Q5: Can BIT be removed at deployment time without side sffect

Another distinguishing characteristic in many embeddextiesys is
that they are resource constrained. They are often prododadye
volumes, and it is economically beneficial to spend devebam
time on using techniques that uses a minimum of hardware re-
sources (e.g., processor, network, and memory). The nestign

is related to these issues:

Q6: How much extra hardware resources are required for irdéeg
ing BIT techniques?

Analysis, when applied, is often used in early phases; wib#tng

in used in the later phases to verify that the system behawves a
cording to analysis and specifications. Analysis could ipbsbe
developed to identify the most critical points to be testedrder to
create and integrate the proper Built-in mechanisms. Tiner etay
around is another interesting possibility, can BIT mecbians be
utilised to get a more precise models of actual systems piep@

BIT may have positive “side-effects” on software qualityjeoof
these possibilities is assed in the following question:

Q7: Can testing concerns early in the development processna
forced by BIT, affect positively on software quality?

Consideration of test issues early in the projects may aszeual-
ity, e.g., it leads to earlier detection of incomplete sfieations. It
would also be interesting to try to measure the impact of BAT o
guality in other phases of development. Reuse is a basiepbint
CBSE that promises to decrease development times. Reustlhas
not been widely used, especially in the embedded systemseseg

based systems?

BIT may shorten the development-time through shorter watifbn
time. This is perhaps only valid when tests or test resuiseused,
e.g., upon regression tests after maintenance or when aor@mp

is used in a new application. It might be a higher investment t
develop a reusable BIT compared to standard tests, thistimest
must pay off when the component is touched next time. An-inter
esting question here is:

Q9: To what extent is it possible to reuse the tests and testtse
themselves?

It is well-known that test-related activities constitutéasge part

of the total development time for software. Therefore renfsest
cases, and when possible even test results, is as impostaatise
of the software itself. Otherwise the effect from reuse anttital
development time will be minor. However in order to rely onsed
test cases or test results, it must be ensured that the rentigdis
compatible with the intended context for the component. deixp
ence has shown that software reuse in new contexts is dargyero
It is mandatory that test-results and test suites that aseilple to
reuse are distinguished from those that must be changed.

From a pragmatic view it may be too difficult to achieve cormgran
reuse in industrial software projects, at least in a shadpgeetive.
There may be benefits in terms of shortening the total devedop-
time even if components are not reused. Such benefits woigd or
nate from from increased quality and earlier detection etjra-
tion faults. Hence, the last question is formed:

Q10: Can testing concerns early in the development procass,
enforced by BIT, shorten development-times?

The key research areas that we have defined based on the above
questions can be summarized in the following list:

e Suitable BIT techniques for testing embedded systems

e Integration of BIT techniques that do not change system be-
haviour or raise complexity

e Resource aware BIT techniques for highly resource con-
strained systems

e Built-in analysis techinques, especially for timing projes

e Synergies between analysis and BIT

e Safe methods to enable reusing of tests and test results

Our expectation is that a careful integration of BIT teclueig| in
the context of CBSE for embedded systems has high potential t
improve the quality of the software and shorten the devetlypm
time, compared to traditional non-component based dexsop
and component-based development.

3 References

[1] I. Crnkovic and M. Larsson.Building Reliable Component-
Based Software Systenfrtech House publisher, 2002. ISBN
1-58053-327-2.

[2] M. Akerholm, I. Pavlova, and J. Fredriksson. Application of
built-in-testing in component-based embedded systemsh-Te
nical report, Technical report, Malardalen university, yMa
2006. http://lwww.mrtc.mdh.se/publications/1125.pdf.

the reasons are many, but one of them may be the lack of test sup[3] C. E. F. Project, 2006. http://www.component-plus.org

port in the reuse mechanism. Naturally, the first questioreoise
and BIT is:

Q8: Does BIT facilitate component reuse in embedded conmpone

[4] W. Wolf. What is embedded computing?2ZEEE Computer
35(1):136-137, January 2002.



