
Faster WCET Flow Analysis by Program Slicing

Christer Sandberg Andreas Ermedahl Jan Gustafsson Björn Lisper
Dept. of Computer Science and Electronics, Mälardalen University, Västerås, Sweden

{christer.sandberg,andreas.ermedahl,jan.gustafsson,bjorn.lisper}@mdh.se

Abstract
Static Worst-Case Execution Time (WCET) analysis is a technique
to derive upper bounds for the execution times of programs. Such
bounds are crucial when designing and verifying real-time systems.
WCET analysis needs a program flow analysis to derive constraints
on the possible execution paths of the analysed program, like itera-
tion bounds for loops and dependences between conditionals.

Current WCET analysis tools typically obtain flow information
through manual annotations. Better support for automatic flow ana-
lysis would eliminate much of the need for this laborious work.
However, to automatically derive high-quality flow information is
hard, and solution techniques with large time and space complexity
are often required.

In this paper we describe how to use program slicing to reduce
the computational need of flow analysis methods. The slicing iden-
tifes statements and variables which are guaranteed not to influence
the program flow. When these are removed, the calculation time of
our different flow analyses decreases, in some cases considerably.

We also show how program slicing can be used to identify the
input variables and globals that control the outcome of a particular
loop or conditional. This should be valuable aid when performing
WCET analysis and systematic testing of large and complex real-
time programs.

Categories and Subject Descriptors J.7 [COMPUTERS IN OTHER
SYSTEMS]; C.3 [SPECIAL-PURPOSE AND APPLICATION-
BASED SYSTEMS]: REAL-TIME AND EMBEDDED SYSTEMS

General Terms Verification, Reliability

Keywords Hard real time, worst-case execution time analysis

1. Introduction
A Worst-Case Execution Time (WCET) analysis finds an upper
bound to the worst possible execution time of a computer program.
Reliable WCET estimates are crucial when designing and verifying

This research has been supported by the Advanced Software Technology
Center (ASTEC) in Uppsala [2], as well as by the KK-foundation through
grant 2005/0271. ASTEC is a Vinnova (Swedish Agency for Innovation
Systems) initiative [40].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

LCTES’06 June 14–16, 2006, Ottawa, Ontario, Canada.
Copyright c© 2006 ACM 1-59593-362-X/06/0006. . . $5.00.

embedded and real-time systems, especially safety-critical such
systems like vehicles, military equipment and industrial power
plants [16].

The traditional way to determine the timing of a program is by
measurements. This is labour-intensive and error-prone work, and
even worse, it cannot guarantee that the true WCET has been found
since, in general, it is impossible to perform exhaustive testing.

An alternative technique is static WCET analysis, which deter-
mines a timing bound from mathematical models of the software
and hardware involved. Given that the models are correct, the ana-
lysis will derive a timing bound that is safe, i.e., greater than or
equal to the true WCET. To be useful, the bound must also be tight,
i.e., provide little or no overestimation compared to the true WCET.

To statically derive a timing bound for a program, information
on both the hardware timing characteristics, such as the execution
time of individual instructions, as well as the program’s possible
execution flows, to bound the number of times the instructions can
be executed, needs to be derived. The latter includes information
about the maximum number of times loops are iterated, which
paths through the program that are feasible, execution frequencies
of code parts, etc.

The goal of a flow analysis method is to calculate such flow in-
formation as automatically as possible. For complex programs, it is
hard (and in the general case impossible, due to the halting prob-
lem), to derive this information. To be feasible, flow analysis meth-
ods therefore calculate approximations of the flow information, and
allow additional information to be given in terms of manual anno-
tations. In general, there is a trade-off between the precision of a
flow analysis method and its computational need; a coarser ana-
lysis will typically run faster but provide less detailed information.
Good flow analysis is hard to do, and solution techniques with large
time and space complexity are often required [20, 32].

The work presented here uses program slicing [41]. Program
slicing finds the subset of a program (or an enclosing subset) that
can affect some given part of the program, e.g., a specific condition,
a loop or all loops. It is used in various areas, like debugging,
testing, software measurement, program comprehension, software
maintenance, and program parallelization [42]. However, to our
knowledge, it has not been used for WCET analysis before.

In this article we introduce program slicing as a technique
to reduce the computational need of flow analysis methods. The
concrete contributions of this article are:
• We introduce program slicing as a technique to remove state-

ments and variables which can be guaranteed to not affect the
program flow. Thereby, we reduce the computational need of
subsequent flow analyses, without decreasing their precision.

• We show how to slice w.r.t. a selected subset of all program
constructs, e.g., for loops only, allowing for coarser but still safe
flow analyses to be made.

• We show how to slice w.r.t. a particular program construct,
e.g., a single loop or conditional statement. This allows us

uncover dependences that need to be considered when selecting
a suitable flow analysis method for that construct.

• We present an alternative program slicing algorithm, yielding
results that are almost equally precise as for the standard slicing
algorithms, but being simpler to implement.

• We show how to use program slicing to identify the input vari-
ables and globals that may affect the program flow.

• We evaluate the effect of our different program slicings, includ-
ing the amount of code removed and the execution time reduc-
tion for our flow analysis methods.

The rest of this paper is organized as follows: Section 2 gives an
introduction to static WCET analysis and presents related work.
Section 3 motivates our program slicing. Sections 4 and 5 present
our program model and the standard slicing algorithm used. Sec-
tions 6 and 7 present different slicing alternatives for flow analysis.
Section 8 discusses flow information and code removal. In Sec-
tion 9, we describe how to find input variables and globals that
may affect the program flow. Section 10 presents the WCET ana-
lysis tool in which we have implemented the program slicing. Sec-
tion 11 presents our measurements and evaluations. Finally, Sec-
tion 12 gives our conclusions and presents future work.

2. WCET Analysis Overview and Related Work
Any WCET analysis must deal with the fact that most computer
programs do not have a fixed execution time. Variations in the
execution time occur due to different input data, the characteristics
of the software, as well as of the hardware upon which the program
is run. Thus, both the software and the hardware properties must be
considered in order to derive a safe WCET estimate.

Consequently, static WCET analysis is usually divided into
three phases: a (fairly) machine-independent flow analysis of the
code, where information about the possible program execution
paths is derived, a low-level analysis where the execution times for
instructions or sequences of instructions are decided from a per-
formance model for the target architecture, and a final calculation
phase where the flow and timing information are combined to yield
a WCET estimate.

In low-level analysis researchers have studied effects of various
hardware enhancing features, like caches, branch predictors and
pipelines [3, 10, 27, 38]. A frequently used calculation method
is IPET (Implicit Path Enumeration Technique), using arithmetical
constraints to model the program structure, the program flow and
low-level execution times [12, 24, 38].

Flow analysis research has mostly focused on loop bound ana-
lysis, since upper bounds on the number of loop iterations must
be known in order to derive WCET estimates [12]. Since the flow
analysis does not know the execution path that gives the longest ex-
ecution time, the information must be a safe (over)approximation
including (at least) all feasible program executions, e.g., loop iter-
ation bounds must be equal to or larger than what is actually possi-
ble. Flow analysis can also identify infeasible paths, i.e., paths ex-
ecutable according to the control-flow graph structure, but not fea-
sible when considering the semantics of the program. Other useful
flow information include execution frequencies of different code
parts.

A number of flow analysis methods are used in practice, each
with different precision and computational need. Whalley et al.
[22, 23] use data flow analysis and special algorithms to calculate
bounds for single and nested loops in conjunction with a compiler.
The aiT WCET tool has a loop-bound analysis based on a com-
bination of an interval-based abstract interpretation and pattern-
matching working on the machine code [38]. The Bound-T WCET
tool has a loop-bound analysis based on Presburger arithmetics
working on the machine code [39]. Altenbernd and Stappert [35]

1. A[0] = 42;
2. i = 1;
3. j = 5;
4. n = 2 * j;
5. while (i<=n) {
6. A[i] = i * j;
7. i++;
8. if (i==MAX) {
9. i--;
10. break;
11. }
12. }

(a) Original code

1.
2. i = 1;
3. j = 5;
4. n = 2 * j;
5. while (i<=n) {
6.
7. i++;
8. if (i==MAX) {
9.
10. break;
11. }
12. }

(b) Code after slicing

Figure 1. Example of program slicing

use symbolic execution on source code level to derive infeasible
paths. Lundqvist and Stenström [27] find loop bounds and infeasi-
ble path by symbolic simulation on the binary code. We have devel-
oped several flow analysis methods to derive flow information [20],
and we use the outlined program slicing as a preceding step to these
methods (see Section 10.1).

Our research group aims to develop flow analysis methods
which can cope with the complexity of industrial real-time em-
bedded code [28]. Recent case-studies, on static WCET analysis
of embedded industrial codes [5, 13], have shown that it is espe-
cially important to develop better such analyses, thereby reducing
the need for manual annotations.

3. Why do Program Slicing for Flow Analysis?
Any reasonable WCET flow analysis should need to traverse the
program code at least once. Thus, its time complexity should be at
least linear in the size of the program, and more precise analyses
can be expected to have a considerably higher time complexity.
Therefore, if the program to be analysed can be shrunk, a gain in
analysis time can be expected.

The conditions in the code govern the program flow. However,
there may be statements in the code that never will affect the
outcome of any condition. If these statements are removed, then
the code to analyze will be smaller, but the outcome of the flow
analysis should still be the same. However, the analysis time will
be shorter. In this process, it may also turn out that some program
variables are found never to affect the conditions. These variables
can then also be removed from the program, which is beneficial for
the execution time of some flow analyses.

Program slicing, with respect to the conditionals in the program,
can be used to identify the parts of the program that can possibly
affect these conditionals. The rest of the program can safely be
removed before the flow analysis takes place. If the program slicing
takes less time than the gain in flow analysis time, then the slicing
has improved the total analysis time.

Figure 1(a) gives an illustrative code example. The values in
the array A cannot affect the number of times that the loop body
will be executed. Consequently, the statements at row 1 and 6 can
be removed, as illustrated in Figure 1(b). However, to derive a
loop bound, an analysis must consider that the loop can be exited
both if the while condition becomes false, or if the if condition
becomes true. This means that these two conditions cannot be
removed, and neither can any statements or variables that may
affect these conditions, directly or indirectly. Therefore, since the
variable j is used to update the n variable, and n is used in the
loop condition, statements at row 2–4 cannot be removed. MAX is
an input variable defined elsewhere in the program.

Similar to the statement at row 7, the statement at row 9 updates
the i variable. However, the update can only be made after the loop

void main() {
0. int a[9],x,y,i;
1. x=42;
2. y=9;
3. if (x==42) {
4. y--;

}
5. i=0;

do {
6. a[i] = i * 4;
7. i++;
8. } while (i<y);
9. return;
}

(a) Example code

�

�

�

�

�

�

�

�

	

(b) CFG

�

	

�

�

�

�

� �

(c) FDG

	 �

� � � ��

�

�

(d) CDG

�

� �

�

�

	

�

�

�

(e) PDG

�

� �

�

�

	

�

�

�

(f) Slice

Figure 2. PDG slicing illustration

has exited. This means the statement will not affect the number
of iterations in the loop, and it can therefore be removed. This
demonstrates that sometimes it is possible to remove some, but not
all, occurrences of a variable.

4. Program Model
The slicing algorithms described in Sections 5 and 7 are fairly
generic, and can be adapted to work on a variety of programming
languages. Notably, they can handle unstructured code and point-
ers, thus, they are apt for the kind of low-level code that is common
in embedded applications. The algorithms are capable of perform-
ing interprocedural slicing, thus, they are also applicable to code
with functions and procedures.

Our current implementations of the algorithms analyze the in-
termediate compiler format NIC, see Section 10. However, for the
purpose of explaining the algorithms, we consider programs as rep-
resented by conventional control flow graphs (CFG’s). Each node
in such a graph is decorated with either a conditional (boolean ex-
pression) or an assignment. Each program holds a number of pro-
gram variables, whose values are updated by the assignments, and
whose values are retrieved when evaluating conditionals and right-
hand sides of assignments. We also allow pointer variables to ap-
pear in the conditions and assignments: these variables can be as-
signed, accessed, and dereferenced just as in, for instance, C. The
flow graph edges constitute program points: each program point
has unique predecessor and successor nodes, and it holds the pro-
gram state, produced by its predecessor, which is used as input to
its successor. Program analyses often produce information about
the possible states of a program in different program points.

5. Slicing using Program Dependence Graphs
The standard algorithm for program slicing of imperative pro-
grams, originally suggested by Ottenstein and Ottenstein [31],
uses the program dependence graph (PDG) introduced by Ferrante
et al. [14]. Notably, this algorithm handles unstructured code since
it operates on general CFG’s: thus, it can be used also for low-level
code, as long as a CFG can be produced for the code. We have used
an extension of the algorithm to handle interprocedural slicing by
Horwitz et al. [25]. In the following, we give a short account for
this algorithm, and our implementation. As a running example, we
use the example code in Figure 2(a).

5.1 Program dependence graph

For any CFG, its PDG is a directed graph, with the same set
of nodes. The PDG defines the dependences between nodes (i.e.,
given a node n in the program, which other nodes have to be

executed before n to obtain a correct result). The dependences are
of two kinds: data flow dependences, and control dependences.
These dependences can be described by two separate graphs: the
flow dependence graph, (FDG), and the control dependence graph
(CDG). The PDG is then the union of these graphs. The CFG of
our example code is shown in Figure 2(b).

5.2 Data dependences

A node n1 in a CFG is data dependent on the node n2 if a variable
written by an execution of n2 may be read by an execution of n1.
The FDG captures all data dependences between nodes in the CFG.
It can be calculated by a standard reaching definition analysis,
see [30]. (Note, however, that this analysis must deal with pointers,
see Section 5.6). The FDG for our example program is shown in
Figure 2(c).

5.3 Control dependences

A node n1 is control dependent on the condition node n2 if the
execution of n2 may decide whether or not n1 will be executed. In
Figure 2(d) we show the CDG for our example program.

The post-dominance relation can be used to calculate control
dependences. n1 post-dominates n2 if all paths from n1 to the exit
node of the CFG visits n2 [1]. n2 is control dependent on n1 iff
(1) there exists a directed path P from n1 to n2 with any n3 in
P (excluding n1 and n2) post-dominated by n2, and (2) n1 is not
post-dominated by n2 [14]. An algorithm to calculate the control
dependences, based on post-dominance, is given by Gupta [18].

5.4 Calculating the slice

As mentioned, the PDG is the union of the FDG and CDG. The
PDG for our running example is shown in Figure 2(e). The slice
(or backwards slice) w.r.t. a set of nodes N in the CFG is simply
the set of nodes that are backwards reachable from N in the PDG.
A simple backwards search finds this set. For the purpose of WCET
flow analysis, slicing is done w.r.t. sets of condition nodes, see
Section 6.

In our running example, the condition nodes are found at rows 3
and 8. The computed slice w.r.t. these nodes is shown in Figure 2(f).

5.5 Interprocedural analysis

In order to perform interprocedural program slicing, we form the
system dependence graph (SDG) from the PDG’s of the different
functions and procedures in the program. Basically, the SDG is
formed by connecting the call sites to callees through a number
of new nodes, which represent making the call, entering the called
function, copying the actual arguments to local variables in the
called function, returning results, etc. See [25] for details.

1. void foo(int y, int *r) {
2. int A[9][9],x = 42;
3. int z = 9,w = 7,i,j;
4. if (x==42) {
5. y--;
6. z--;
7. w--;
8. }
9. for (i=0;i<y;i++) {
10. for (j=0;j<z;j++) {
11. A[i][j] = i + j;
12. w = w + bar(i,j);
13. }
14. }
15. if (w==42) {
16. *r = 0;
17. }
18. }
19. int bar(int i,int j) {
20. if (i>j)
21. return i;
22. else return i * j;
23. }

(a) Original code

1. void foo(int y) {
2. int x = 42;
3. int z = 9,w = 7,i,j;
4. if (x==42) {
5. y--;
6. z--;
7. w--;
8. }
9. for (i=0;i<y;i++) {
10. for (j=0;j<z;j++) {
11.
12. w = w + bar(i,j);
13. }
14. }
15. if (w==42) {
16.
17. }
18. }
19. int bar(int i,int j) {
20. if (i>j)
21. return i;
22. else return i * j;
23. }

(b) Slicing on all conditions

1. void foo(int y) {
2. int x = 42;
3. int z = 9,i,j;
4. if (x==42) {
5. y--;
6. z--;
7.
8. }
9. for (i=0;i<y;i++) {
10. for (j=0;j<z;j++) {
11.
12.
13. }
14. }
15.
16.
17.
18. }
19.
20.
21.
22.
23.

(c) Slicing on all loops

1. void foo(int y) {
2. int x = 42;
3. int i;
4. if (x==42) {
5. y--;
6.
7.
8. }
9. for (i=0;i<y;i++) {
10.
11.
12.
13.
14. }
15.
16.
17.
18. }
19.
20.
21.
22.
23.

(d) Slicing on single loop

Figure 3. Program Slicing Alternatives

In [25] it is described how to perform a context-sensitive slicing,
which keeps dependence information from different call sites sepa-
rate. Our current implementation is context-insensitive, which may
yield a coarser slicing but is simpler to implement and in general
less costly.

5.6 Involving pointers

Embedded system programmers often use pointers to manipulate
data and decide the outcome of conditionals [34]. Pointers, as well
as the variables they point to, may affect the outcome of conditions.
For example, consider the following code fragment:

int* p = &i; *p = 5; if(i < j)...

In the code, the variable i is assigned a value through the pointer
p, which therefore indirectly decides the outcome of the condition.

Program slicing for realistic embedded programs must therefore
be able to handle dependences through pointers. Pointers affect data
dependences, since an access through a dereferenced pointer may
touch different program variables depending on the current value
of the pointer. Our slicing method assumes, for each program point
q and pointer variable p, that there is a so-called points-to set which
contains the set of variables possibly pointed to by p in the program
point q. Using this information, the slicing algorithm can safely
overestimate the data dependencies by adding a data dependence
arc for each def-use chain [29] concerned by the use of the pointer.

There are a number of different pointer analyses to compute
points-to sets. Our slicing method works with any of these, as long
as it produces a safe overapproximation of the variables possibly
pointed to: obviously, though, a more precise pointer analysis will,
in general, yield a more precise slicing. Our current implementation
uses the pointer analysis of Steensgaard [37]. This analysis is flow-
insensitive and fast, but may produce less precise results than more
sophisticated analyses. Our current implementation of the analysis
is context-insensitive.

5.7 Global variables, arrays and other aggregate objects

Global variables may carry dependences between function calls,
and an interprocedural analysis must take them into account. One
approach is to consider them as extra function parameters, and use

the method of [25] to handle them. Our current implementation
uses a simpler, context- and flow-insensitive approach, where any
use of a global variable is considered dependent on any definition
of the same variable.

Our implementation handles arrays and other aggregate objects
(e.g., structs) as single data objects. Accesses to elements A[i]
and A[j] will thus be considered accesses to the same variable A,
despite the fact that i and j may have different values.

6. Program Slicing Alternatives
As explained in Section 2, the goal of a flow analysis is to derive
bounds on the number of times different parts of the program
can be executed. We now show how the precision of this analysis
can be traded for running time by slicing w.r.t. different kinds of
conditions.

As an illustrating example, consider the C code fragment in
Figure 3(a). It consists of two functions foo() and bar(). The
input parameter r to foo() is a pointer. We assume that r cannot
point to any local variable or parameter of these functions, and that
the value stored through r in foo() is not needed for the analysis
of the caller of foo().

A flow analysis of the code in Figure 3(a) may derive iteration
bounds for the different loops in rows 9 and 10, as well as bounds
for the number of times the true and false exits can be taken from
the if conditions in rows 4, 15 and 20.

In order to find a finite upper timing bound for a program,
finite upper bounds for the iteration counts of all loops (and for
the recursion depth of all recursive functions), are needed. In order
to find such bounds, all the exit conditions of all the loops must
in general be analyzed. Analyzing the remaining conditions in the
program can give more precise flow information, and thus a tighter
WCET estimate. However, if they are ignored then the WCET
estimate will still be finite, possibly still useful, and the analysis
will in general be less costly. For instance, it is not necessary to
analyze the condition in row 20 in Figure 3(a) to obtain a finite
WCET estimate for foo(). However, an analysis of the condition
can give bounds how often the respective paths in bar() can be
taken in the nested loop of foo(). If these bounds are lower than
the loop iteration bounds, then a better WCET estimate may be

obtained, since the multiplication in the else branch most likely
makes it more costly than the other branch to execute.

6.1 Slicing with respect to all conditions

Figure 3(b) shows the result when slicing w.r.t. all conditions for
the code in Figure 3(a), which has two loop exit conditions in rows
9 and 10, and three if conditions in rows 4, 15 and 20. A flow
analysis of this code should give the same resulting program flow
constraints as for the non-sliced version.

The slicing removes both the declaration and the update of the
array A, since it does not affect the outcome of any condition. For
the same reason, the slicing also completely removes the input
parameter r.

6.2 Slicing with respect to all loop exit conditions

Figure 3(c) illustrates the result of slicing w.r.t. all the loop exit
conditions but no others. More code has been removed than by the
slicing in Figure 3(b), including the call to bar() and the complete
bar() function.

Note however, that even though we sliced only w.r.t. loop con-
ditions, the resulting code still contains an if condition in row 4.
This is because the loop conditions are data dependent on the as-
signments in rows 5 and 6, which in turn are control dependent on
the if condition.

A flow analysis of the code in Figure 3(c) should produce the
same loop iterations bounds as a flow analysis of the code in
Figure 3(a). However, some additional bounds on the outcome of
conditions would be lost. A WCET calculation would be able to
calculate a finite upper timing bound, however potentially less tight.
On the other hand, the flow analysis will probably run faster since
it will have to analyze less code.

6.3 Slicing with respect to single loops

It is possible to slice only w.r.t. to the exit conditions of a single
loop, or loop nest. The purpose is then not to use the sliced pro-
gram directly for flow analysis, but rather to find the individual
dependence pattern for the loop construct. This allows us to select
the flow analysis method most suitable to bound the iteration count
of this loop: for instance, we may have a library of pre-calculated
iteration count bounds for certain common loop patterns.

Figure 3(d) shows the result of slicing only w.r.t. the loop exit
condition in row 9. The slicing removes even more code than the
slicing on all loops shown in Figure 3(c). This is because the
outcome of the loop exit condition in row 9 is independent of the
loop exit condition outcome and the data updated in the inner loop
at row 10. Consequently, the inner loop can be removed as well as
all occurrences of the variables j and z.

If we instead would have sliced upon the inner loop in row 10,
both loops would have been kept after slicing. This is because the
inner loop cannot be entered unless the outer loop is entered, and
the exit condition of the inner loop is therefore control dependent
on the exit condition of the outer loop.

7. A Simplified Slicing Algorithm
As explained in Section 3 it is sometimes possible to remove some,
but not all occurrences, of a variable. The PDG program slicing
algorithm of Section 5 is flow-sensitive and allows us to detect
and represent dependences between different variable occurrences.
Consequently, the algorithm can sometimes remove certain occur-
rences of the same variable but not others.

A alternative solution is to not differentiate between different
variable occurrences. A slicing resulting from this approach is flow-
insensitive, and keeps all occurrence of a variable if at least one
occurrence has to be kept. For example, a slicing w.r.t. the loop

SIMPLESLICE(CODE ,ASS ,VARS ,CVARS ,PTS)
Input CODE - the code to be sliced

ASS - all program points preceding an assignment in the code
VARS - all variables in the code
CVARS - all variables in conditionals in the code
PTS - a mapping from pointer variables and program points
to points-to-sets

Output SLICE - the modified code
0. SLICE := CODE
1. N := CVARS
2. P := ∅
3. prev := 0
4. while |N | > prev do
5. prev := |N |
6. foreach q ∈ ASS do
7. foreach v ∈ DEFS(PTS , q, STMT(q)) do
8. if v ∈ N then
9. P := P ∪ {STMT(q)}
10. N := N ∪ USES(PTS , q, STMT(q))
11. foreach q ∈ ASS do
12. if STMT(q) /∈ P then
13. REMOVESTMT(SLICE , STMT(q))
14. return SLICE

Figure 4. SIMPLESLICE - a slicing algorithm not differentiating
between different variable instances

condition in Figure 1(a) would not remove the statement at row 9,
since the variable i is used in both conditions. This alternative ap-
proach may remove less statements than the PDG slicing. However,
it should be easier to implement, since its dependence representa-
tion is simpler.

In order to investigate how much precision that is lost when us-
ing this simplified slicing approach, we have designed and imple-
mented the algorithm SIMPLESLICE, which is given in Figure 4.
For simplicity, we only give the intraprocedural version: it can be
extended to an interprocedural analysis by standard means [30].

SIMPLESLICE distinguishes between conditional and assign-
ment statements. For any program point q, we define STMT(q) to
be the succeeding statement.

SIMPLESLICE uses the set P all statements that should not be
removed, and the set N to hold all variables that has been used.
In the first pass, these sets are computed. N is initialized to the
set of all variables appearing in any conditional in the code, and
P is initialized to the empty set. The algorithm then performs a
fixpoint iteration over the assignment statements in the code, where
statements possibly affecting a variable in N are added to P , and
the used variables of these statements are added to N , until these
sets do not grow any more. Clearly, this process must terminate
since there are only a finite number of variables and assignments
in a program. In the second pass, all assignment statements not in
P can be safely removed from the code. The declaration of any
variable that is not present in the slice can be removed.

Variables may be read or written through pointers. We assume,
for each program point q and pointer variable p, that there is a
points-to set PTS(p, q) which contains the set of variables possibly
pointed to by p in the program point q.

The DEFS function calculates a set of locations where the re-
sult of an assignment may be stored. If the left-hand side of the
assignment contains dereferenced pointers, then DEFS uses PTS
to calculate possible locations where the result might be stored.
For example, if x and i are variables and p is a pointer with
PTS(p, q) = {a, b}, then DEFS(PTS , q, x = ∗p + i) = {x} and
DEFS(PTS , q, ∗p = 17) = {a, b}.

e ::= c | x | & x | ∗ e | f(e1, ..., en)
s ::= x = e | ∗ e = e′

DEFS(PTS , q, x = e) = {x}
DEFS(PTS , q, ∗ e = e′) = refs(PTS , q, e)

USES(PTS , q, x = e) = USES(PTS , q, e)
USES(PTS , q, ∗ e = e′) =

USES(PTS , q, e) ∪ USES(PTS , q, e′)
USES(PTS , q, c) = ∅
USES(PTS , q, x) = {x}
USES(PTS , q, & x) = ∅
USES(PTS , q, ∗ e) = refs(PTS , q, e) ∪ USES(PTS , q, e)
USES(PTS , q, f(e1, . . . , en)) =

USES(PTS , q, e1) ∪ · · · ∪ USES(PTS , q, en)

refs(PTS , q, c) = {Φ(c)}
refs(PTS , q, x) = PTS(Φ(x), q)
refs(PTS , q, & x) = {Φ(x)}
refs(PTS , q, ∗ e) = (PTS(x, q) | x ∈ refs(PTS , q, e))
refs(PTS , q, f(e1, . . . , en)) =

{Φ(f)(x1, . . . , xn) | xi ∈ refs(PTS , q, ei), 1 ≤ i ≤ n }

Figure 5. Definitions of DEFS and USES

The USES function returns the set of variables possibly used
(read) in a statement. These values may be used to calculate both
the right-hand side, and the address where to store the result. Simi-
larly to DEFS, it uses PTS to calculate variable uses through deref-
erenced pointers. For instance, for the above x, i, and p we get
USES(PTS , q, x = 42) = ∅, USES(PTS , q, p = p + i) = {p, i},
and USES(PTS , q, ∗p = ∗p− x) = {a, b, p, x}.

DEFS and USES are more formally defined, over a simple ab-
stract language of assignments, in Figure 5. In the presentation we
use s, e, x and c to denote an arbitrary statement, expression, vari-
able and constant respectively. We use ∗ to denote the dereference
operator, & the address-of operator, and f to denote any other, arbi-
trary operator in our language, e.g., addition or subtraction.

Φ(f) maps f to the domain used to represent addresses in the
analysis. For example, when analysing binary code, the domain
can be sets of memory addresses, and then Φ will map, e.g., + to
address addition. When analysing intermediate code with symbolic
addresses, (like we do in our WCET analysis tool), the domain may
be sets of symbolic addresses.

What is the worst-case complexity of SIMPLESLICE? In the
first pass, the number of fixpoint iterations can at most equal the
number of variables in the program. Each iteration goes through all
program points preceding an assignment statement, and for each
such program point q all the variables in DEFS(PTS , q, STMT(q))
are processed. This set can contain at most all variables in the pro-
gram. Thus, the first pass has time complexity O(|VARS |∗|ASS |∗
|VARS |). The second pass has time complexity O(|ASS | +
|VARS |), which is dominated by the first pass, so the complexity
of SIMPLESLICE equals the complexity of the first pass. However,
the algorithm will in most cases perform better (see Section 11).

In contrast to the PDG slicing algorithm, SIMPLESLICE must
always slice w.r.t. all conditional statements in the code. The reason
is that it does not attempt to follow control dependences when
growing the sets N and P . Thus, if slicing w.r.t. a subset of the
conditions, there is a risk that variables or assignments, indirectly
affecting some selected condition through a control dependence,
will not be included in these sets. When the slicing is done w.r.t. all
conditions, then such variables or assignments will always affect at

���������	

�������
����
����
	�����

���

���

���

���������
����
���������

��	
����

���

(a) Original CFG

���������	

����
����
	�����

���

���

���

����
���������

��	

���

(b) Sliced CFG

���������	

����
����
	�����

���

���

���

����
���������

���

(c) BB removed

Figure 6. Removal of empty basic block

least one condition through a data dependence, and they will thus
be recorded.

8. Flow Information and Code Removal
It should be noted that a sliced program only should be used in
the flow analysis phase of a WCET analysis. A low-level analysis,
which derives execution times for program code parts, must still
analyse the non-reduced program. Consequently, to be valid, a flow
analysis of a reduced program must produce flow information valid
also for the original non-reduced program.

We take a general approach and consider the result of a flow
analysis as upper and lower bounds on the number of times that
different basic blocks or control-flow edges between basic block
could be executed1. As an illustration consider the control-flow
graph (CFG) in Figure 6(a), corresponding to the example code
fragment in Figure 1(a). By giving a bound on the number of times
node BB2 can be executed (the loop header), we implicitly give a
bound on the number of times the loop can be iterated.

In some cases, especially when slicing on individual loops or
conditionals, we can remove all instructions in a basic block. We
can then either keep the empty block, or we can remove the empty
block and rewrite the CFG accordingly. For the latter approach we
must be sure that we still produce flow information valid for the
original non-sliced CFG.

As an illustration consider the CFG in Figure 6(b) correspond-
ing to the sliced program in Figure 1(b). After the slicing BB4 does
not contain any instructions, and could therefore be removed, giv-
ing the simplified CFG in Figure 6(c).

A removal of node BB4 does not mean that we can give flow
information stating that node BB4 never can be taken. Instead,
we are only allowed to give bounds on basic blocks or edges
which have not been removed. For example, a flow analysis for
the reduced CFG in Figure 6(c) could produce a loop bound as an
upper bound on BB2. This loop bound can be directly mapped back
to the original CFG in Figure 6(a).

9. Identifying Inputs Affecting Program Flow
Another use of program slicing is to identify the input variables
that may affect the program flow. This is useful information with
a number of applications; e.g., to understand the behavior of the
program or as an aid during testing. For WCET analysis, it is
important to know these variables since their values in general must
be constrained as much as possible, using information about the

1 A basic block is a sequence of instructions that can be entered only at the
first instruction in the sequence and exited only at the last instruction in the
sequence [29].

��

����������		
���	�������
	����
�����

���������
����	
�
�
�����������

���

��
�����	���
��������

��

������		

�������

�
	�
�����

�������
�������

���
��������

���������� ��� �������
����	
�

���������
�	�������	 ������������ �� �

	���������
����	
�

�����
����	
�

��
�����
���������

��

����

�	��	�
	������

����

Figure 7. WCET analysis tool

environment of the program, in order to obtain tight program flow
constraints from the flow analysis.

For an embedded program (or task) written in C or a similar
language, the input variables may be
1. values read from the environment using primitives such as ports

or memory mapped I/O,
2. parameters to main() or the particular function that invokes

the task, and
3. data used for keeping the state of tasks between invocations

or used for task communication, such as global variables or
message queues.
The input variables that may affect the control flow are simply

the remaining input variables, after slicing w.r.t. the conditions of
the program, for which there is a path through the sliced program
where the variable may be read before it is written. A simple data
flow analysis can find for which variables such paths exist. If there
are no such input variables in the reduced program, then the original
program is a single-path program.

This analysis can also be made if we slice w.r.t. a subset of the
conditions in the program, as described in Section 6. For example,
if we slice w.r.t. a loop, then we can identify the inputs which
control the behavior of that loop. If a loop is not controlled by any
inputs, then it will always execute in the same way.

10. Our WCET Analysis Tool
The outlined program slicing method has been implemented as a
step in our prototype WCET analysis research tool. The tool has a
modular design, to ease replacement of analysis methods and target
system platform [12].

The analysis steps of our WCET tool are depicted in Figure 7,
highlighting the parts which are of particular interest for this paper.
In essence, the tool architecture conforms to the general scheme
for WCET analysis presented in Section 2, consisting of a flow
analysis, a low-level analysis and a calculation.

The upper part of Figure 7 shows the conversion of the C code
to intermediate code and executable code. We perform our analysis
on NIC (New Intermediate Code), an intermediate code format
designed for embedded system code analysis and compilation [33].
Performing our analyses on intermediate code allows us to easily
identify variables, and other entities of interest, which are hard
to identify directly from the object code. Furthermore, it gives us
the opportunity to evaluate the benefits of integrating static WCET
analysis with a compiler.

NIC is generated from C using a research compiler based on
LCC [15]. The NIC format is able to handle complete ANSI-C.
NIC can be closely connected to the C source, so that all data
and control structures in the C code have direct counterparts in the
NIC code. Alternatively, NIC can represent the code after various
compiler optimizations, just before the compiler backend generates
the resulting object code. The NIC control flow will then be close to
the object code control flow, and derived flow facts can be directly

mapped to the object code. Together with timing information from
the low-level analysis, derived flow facts can be given as input to
the calculation. A Steensgaard pointer analysis is performed on
the generated NIC code. Finally, the NIC code is used to generate
object code. More details on our use of NIC is given in [20].

The lower part of Figure 7 shows the steps of the flow analysis.
These are described in more detail in Section 10.1. Our low-level
analysis allows us to analyse and represent the effect of processor
pipelining and instruction caches [10, 12], currently supporting
the NECV850E and ARM9 processors. Our calculation supports
three different calculation methods [8, 11, 36], each able to handle
complex flow information and hardware timing dependendencies.

10.1 Flow analysis methods employed

The flow analysis phase of our WCET tool consists of several
different analyses, as illustrated in Figure 7. The first analysis is
the program slicing method outlined in this article, which takes
the result of the NIC code with pointer information as input, and
generates reduced NIC code as output to the subsequent analyses.

The second analysis, value analysis, is based on abstract inter-
pretation [7] [20] and derives bounds on possible variable values
(including pointers) for each node in a combined control-flow and
call-graph. The abstract domain used in the current version of our
WCET tool is a combination of the interval domain [7] and the
congruence domain [17]. The analysis calculates an abstract state
for each node in the graph, representing a set of states potentially
possible at the particular node. We use widening to guarantee termi-
nation of the analysis, and narrowing to improve the precision [6].

The third analysis, syntactical analysis, uses pattern-matching
to find common patterns in how control-flow constructs are writ-
ten [21]. For example, the body of a for(i=0;i<=100;i++)
loop construct can easily be deduced to iterate 101 times, using
simple pattern matching, provided the body has no other loop exits.
The syntactical analysis can be improved by using bounds on pos-
sible variable values derived by the value analysis. For example, if
the value analysis derived the upper bound of LIMIT to be 50, the
loop body of for(i=0;i<=LIMIT;i++) can easily be deduced
to iterate at most 51 times. The syntactical analysis is currently un-
der development and will therefore not be used, in Section 11, to
evaluate our program slicing method.

The final flow analysis, labelled abstract execution, can be seen
as a combination of abstract interpretation and symbolic execu-

i = INPUT; // i = [1..4]
while (i < 5) {

// point p
...
i++;

}
(a) Example program

iter i value at p
1 [1..4]
2 [2..4]
3 [3..4]
4 [4..4]
5 impossible

(b) Analysis

Minimum
#iter: 1

Maximum
#iter: 4

(c) Result

Figure 8. Example of abstract execution

tion [19, 20]. It uses abstract interpretation to derive safe bounds on
variables at different points in the program. However, to derive loop
bounds and other flow information, loops are ”rolled out” dynami-
cally and each iteration is analysed individually in a fashion similar
to symbolic execution. The analysis also has some similarities with
trace partitioning [4] and the simulation technique used in [26].
Compared to the later, however, our analysis uses a more detailed
value domain.

Figure 8 gives a simple example on abstract execution using
intervals. The loop in Figure 8(a) is analysed in Figure 8(b). As
each iteration is analysed, the possible values of i are reduced until,
finally, the value is impossible, and the loop analysis terminates.
The result in Figure 8(c) shows the resulting lower and upper bound
on the number of iterations.

By using abstract interpretation as a formal basis the abstract
execution is guaranteed to analyse (i.e., abstractly execute) at least
all feasible execution paths of the program. Hence, the analysis will
have an execution time in most cases proportional to the worst-case
execution time of the analyzed program. However, due to over-
approximations in the analysis, the abstract states might sometimes
include values which are not really possible in the actual execution.
This means that non-feasible execution paths may be analysed by
the abstract execution, sometimes leading to an overestimation of
loop bounds and other flow information. This is the price we have
to pay to have a safe and still very detailed flow analysis.

The result of the syntactical analysis and the abstract execution
are passed as a set of flow facts [9] to the subsequent calculation
phase, each giving constraints on the program flow for a certain
piece of the analysed program (loop bounds, infeasible paths, exe-
cution dependences, etc.) [12].

11. Measurements and Evaluations
In order to evaluate the effectiveness and usefulness of our program
slicing analysis we have performed a number of measurements us-
ing the benchmarks listed in Table 1. The benchmarks are taken
from the Mälardalen University WCET benchmark suite [28], all
being standard benchmarks for evaluating WCET tools and meth-
ods. The #LOC columns gives the number of lines in the C-code
(including comments). The #CFG, #BB, #Stmt, #Cnd, #LCnd,
#LDcl, #GDcl columns gives the number of control-flow graphs,
basic blocks, statements, conditions (both for loops and branches),
loop exit conditions, local variable declarations and global variable
declarations in the NIC code, respectively.

11.1 Code size reduction

Table 2 shows the reduction in code size due to program slicing.
The effect of using our alternative slicing algorithm, which does not
distinguish between variable instances, is given in the Simple slice
part. The results of slicing w.r.t. all conditionals (see Section 6.1)
are given in the Loops & conds part. The results of slicing w.r.t.
all loop exit conditions only (see Section 6.2) are given in the Only
loops part.

The -#BB, -#Stmt, -#Dcl, and -#GDcl columns give the number
of removed basic blocks, statements, local declarations, and global
declarations, respectively. The -% columns gives the percentage of
each removal, as compared with the original number. The bottom
line gives the average for the programs.

We first notice that the number of removed code parts varies
a lot between the analysed programs. This is natural, since the
amount of code that can be removed depends on the program struc-
ture. For programs such as bsort100 and insertsort, where
most of the variables are used in some conditional expression, there
are only a few statements which can be removed. For other pro-
grams, containing a lot of calculations where the results are not

Program Original Loops & conds Only Loops
Time Time -% Time -%

bsort100 3.77 3.76 0 3.76 0
cnt 7.38 1.27 83 0.03 100

cover 4.54 1.13 75 0.01 100
crc 2.61 0.08 97 0.04 98
edn 23.4 0.11 100 0.11 100

expint 0.05 0.04 20 0.03 40
fdct 2.81 0.01 100 0.01 100

fibcall 0.02 0.02 0 0.03 0
insertsort 1.24 1.24 0 1.24 0

jfdctint 11.46 0.02 100 0.01 100
lcdnum 0.06 0.04 33 0.01 83

statemate 1.05 1.04 1 1.02 3

Average 51 60

Table 3. Time reduction for value analysis

used in conditional expressions, such as crc and edn, large code
parts can be removed.

We see that the simple algorithm and slicing on all loops and
conditionals perform similarly, while the more aggressive slicing
on all loops only is able to reduce more code parts. Almost half of
the statements are removed on average.

As explained in Section 9 we can use our program slicing to
identify which input variables that may affect the program flow.
In our benchmarks, the only inputs to the programs are the global
variables. The GDcl column gives the number of removed global
declarations. When there are no globals left in the program, it
means that the program only has one execution path. For these
type of programs it should be enough to run the program once to
calculate the flow facts. Otherwise, the remaining global variables
are candidates to be input variables, and bounds on their possible
values they must therefore in general be provided in order to obtain
a finite WCET estimate. More than half of the global variables are
removed on average by the different slicings, which should reduce
the effort to bound input variables considerably.

11.2 Flow analysis time reduction

To evaluate the effect of our slicing on subsequent flow analysis,
we analysed both the original non-sliced programs and the sliced
programs. We compared the execution times for the value analysis
and the abstract execution (see Section 10.1), which both are time-
consuming. For each benchmark we calculated flow facts in the
form of loop bounds. The calculations yielded exactly the same
flow facts for the non-sliced and sliced versions2. We have not
included analysis times for the simple slicing algorithm, since it
gives roughly the same times as the PDG-based method for loops
and conditionals.

All measurements were performed on a 1.25 MHz PowerPC G4
processor, 1 Gb memory running Mac OS 10.4.4. We called the
standard function time() immediately before and after the call
to the particular flow analysis module, and thereafter calculated
the time difference. The measured times in all tables are given in
seconds.

Table 3 gives the time reduction for our value analysis. The
column Original gives the analysis time for our original program,
Table 4 gives the time reduction for our abstract execution. In the
tables, the columns Time and -% give the analysis time and time
savings for the sliced programs.

The gain in analysis time of a sliced program compared to an
unmodified one, is approximately about 50% for the benchmarks.
For some programs, (like insertsort and statemate) no real
effect is visible, but for other programs (like edn and fdct), we

2 Since only loop bounds were calculated, slicing on only loops is expected
to give the same result as slicing on all conditions.

Program Description Code properties #LOC #CFG #BB #Stmt #Cnd #LCnd #LDcl #GDcl
bsort100 Bubblesort program. Tests the basic loop constructs, integer comparisons, and

simple array handling by sorting 100 integers.
128 2 13 29 5 4 10 1

cnt Counts non-negative numbers in a matrix. Nested loops, well-structured code. 267 6 22 70 5 4 20 6
cover Program for testing many paths. A loop containing many switch cases. 508 4 586 626 293 3 113 0
crc Cyclic redundancy check computation on 40

bytes of data.
Complex loops, lots of decisions, loop bounds depend
on function arguments, function that executes differently
first time called.

128 3 29 89 9 3 37 5

edn Finite Impulse Response (FIR) filter calcula-
tions.

A lot of vector multiplications and array handling. 285 9 46 286 12 12 141 3

expint Series expansion for computing an exponen-
tial integral function

Inner loop that only runs once, structural WCET esti-
mate gives heavy overestimate.

157 3 23 58 7 4 20 0

fdct Fast Discrete Cosine Transform. A lot of calculations based on array elements. 239 2 7 138 2 2 43 1
fibcall Iterative Fibonacci, used to calculate fib(30). Parameter-dependent function, single-nested loop. 72 2 7 22 2 2 8 0
insertsort Insertion sort on a reversed array of size 10. Input dependent nested loop with worst-case of n2/2

iterations.
92 1 7 29 2 2 9 1

jfdctint Discrete-cosine transformation on 8x8 pixel
block.

Long calculation sequences, single-nested loops. 375 2 9 110 3 3 37 1

lcdnum Read ten values, output half to LCD. Loop with iteration-dependent flow. 64 2 56 67 26 1 14 2
statemate Linear equations by LU decomposition. Completely structured code. Tests effect of conditional

flows.
1276 8 310 818 197 1 175 98

Table 1. Benchmark programs used in experiments

Program Simple slice Loops & conds Only loops
-#BB -% -#Stmt -% -#LDcl -% -#GDcl -% -#BB -% -#Stmt -% -#LDcl -% -#GDcl -% -#BB -% -#Stmt -% -#LDcl -% -#GDcl -%

bsort100 2 15 1 3 0 0 0 0 2 15 1 3 0 0 0 0 2 15 1 3 0 0 0 0
cnt 2 9 19 27 7 35 4 67 2 9 19 27 7 35 4 67 2 9 43 61 16 80 6 100

cover 424 72 213 34 10 9 0 - 424 72 213 34 10 9 0 - 570 97 313 50 110 97 0 -
crc 11 38 35 39 20 54 4 80 11 38 35 39 20 54 4 80 13 45 56 63 32 86 4 80
edn 0 0 202 71 118 84 3 100 0 0 202 71 118 84 3 100 0 0 202 71 118 84 3 100

expint 6 26 9 16 3 15 0 - 9 39 24 41 8 40 0 - 9 39 24 41 8 40 0 -
fdct 0 0 126 91 42 98 1 100 0 0 126 91 42 98 1 100 0 0 126 91 42 98 1 100

fibcall 0 0 8 36 4 50 0 - 0 0 8 36 4 50 0 - 0 0 8 36 4 50 0 -
insertsort 0 0 1 3 0 0 0 0 0 0 1 3 0 0 0 0 0 0 1 3 0 0 0 0

jfdcint 0 0 95 86 35 95 1 100 0 0 95 86 35 95 1 100 0 0 95 86 35 95 1 100
lcdnum 37 66 19 28 1 7 1 50 37 66 19 28 1 7 1 50 50 89 61 91 13 93 2 100

statemate 7 2 40 5 1 1 15 15 7 2 40 5 1 1 15 15 13 4 48 6 5 3 17 17

Average 18 34 37 51 20 39 39 57 25 50 61 63

Table 2. Program size reduction

Program Original Loops & conds Only Loops Slicing
Time (s) Time (s) -% Time (s) -% Time (s)

bsort100 0.96 0.96 0 0.95 1 0
cnt 0.33 0.22 33 0.07 79 0

cover 0.69 0.60 13 0.06 91 0.26
crc 2.5 2.05 18 0.91 64 0.01
edn 7.48 1.25 83 1.22 84 0.05

expint 0.17 0.08 53 0.07 59 0
fdct 0.23 0.00 100 0.00 100 0.08

fibcall 0.03 0.02 33 0.02 33 0
insertsort 0.13 0.13 0 0.13 0 0.01

jfdctint 0.24 0.03 87 0.03 87 0.04
lcdnum 0.02 0.02 0 0.01 50 0

statemate 0.14 0.12 14 0.11 21 0.10

Average 36 56

Table 4. Time reduction for abstract execution

see a dramatic reduction of analysis time. This has to do with the
structure of the program, and the success of the slicing.

The slicing time is small compared to the time for the flow
analysis. For some programs like cover and statemate we
don’t get any time reduction at all when considering also the slicing
time. However, both of these programs has a structure that whould
hardly occure in a program written by a human.

12. Conclusions and Future Work
In this paper we have shown that program slicing can be used to
substantially reduce the execution time of WCET flow analysis

methods. Since the method is general, and does not assume any
specific program format, it can be used as a preceding stage to any
flow analysis method.

Our measurements show that program slicing has a significant
effect on the program size for many of our used benchmarks. On
average, slicing gives a reduction of up to 45% in the number of
statements and up to 58% in the number of program variables,
depending on the slicing method chosen. For our flow analysis
methods, this reduction in program size yields an average execution
time reduction of up to 63% for value analysis, and up to 43%
for abstract execution, while obtaining the same resulting flow
information.

We have also shown how to slice w.r.t. a selected subset of all
program conditions, and we have discussed the effects and usage of
such slicings. A simplified slicing algorithm, that produces slices
and reductions in flow analysis time comparable to that of the
standard algorithm, has also been presented.

The benchmark programs that were used for this paper are
single path programs. As a future work we plan to make studies on
how slicing affects analysis times on real, industrial codes. In such
a study we will also measure the effect that the loop only slicing
will have on the precision of the estimated WCET. We also intend
to study how the result of the slicing can be used to enhance the
syntactical analysis mentioned in Section 10.1.

References
[1] Hiralal Agrawal. Dominators, Super Blocks, and Program Coverage.

In Conference Record of POPL ’94: 21st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 25–34,
Portland, Oregon, 1994.

[2] ASTEC homepage, 2005. www.astec.uu.se.

[3] I. Bate and R. Reutemann. Worst-case execution time analysis for
dynamic branch predictors. In Proc. 16th Euromicro Conference of
Real-Time Systems, (ECRTS’04), June 2004.

[4] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret,
Laurent Mauborgne, Antoine Miné, David Monniaux, and Xavier
Rival. Design and implementation of a special-purpose static program
analyzer for safety-critical real-time embedded software. In The
Essence of Computation; Complexity, Analysis, Transformation.
Essays Dedicated to Neil D. Jones, volume 2566 of LNCS, pages
85–108. Springer-Verlag, 2002.

[5] Susanna Byhlin, Andreas Ermedahl, Jan Gustafsson, and Björn
Lisper. Applying static WCET analysis to automotive communication
software. In Proc. 17th Euromicro Conference of Real-Time Systems,
(ECRTS’05), pages 249–258, July 2005.

[6] P. Cousot and R. Cousot. Comparing the Galois Connection and
Widening/Narrowing Approaches to Abstract Interpretation. In
Proc. 4th International Symposium on Programming Languages,
Implementations, Logics, and Programs, Lecture Notes in Computer
Science (LNCS) 631, pages 269–295. Springer-Verlag, August 1992.

[7] Patrick Cousot and Radhia Cousot. Abstract interpretation: A
unified lattice model for static analysis of programs by construction
or approximation of fixpoints. In Proc. 4th ACM Symposium on
Principles of Programming Languages, pages 238–252, Los Angeles,
January 1977.

[8] J. Engblom and A. Ermedahl. Pipeline Timing Analysis Using a
Trace-Driven Simulator. In Proc. 6th International Conference on
Real-Time Computing Systems and Applications (RTCSA’99). IEEE
Computer Society Press, Dec 1999.

[9] J. Engblom and A. Ermedahl. Modeling Complex Flows for Worst-
Case Execution Time Analysis. In Proc. 21th IEEE Real-Time
Systems Symposium (RTSS’00), Nov 2000.

[10] Jakob Engblom. Processor Pipelines and Static Worst-Case
Execution Time Analysis. PhD thesis, Uppsala University, Dept.
of Information Technology, Box 337, Uppsala, Sweden, April 2002.
ISBN 91-554-5228-0.

[11] A. Ermedahl, F. Stappert, and J. Engblom. Clustered Calculation of
Worst-Case Execution Times. In Proc. 6th International Conference
on Compilers, Architecture, and Synthesis for Embedded Systems,
(CASES’03), Oct 2003.

[12] Andreas Ermedahl. A Modular Tool Architecture for Worst-Case
Execution Time Analysis. PhD thesis, Uppsala University, Dept. of
Information Technology, Uppsala University, Sweden, June 2003.

[13] Andreas Ermedahl, Jan Gustafsson, and Björn Lisper. Experi-
ences from industrial WCET analysis case studies. In Proc. 5th

International Workshop on Worst-Case Execution Time Analysis,
(WCET’2005), pages 19–22, July 2005.

[14] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program
dependence graph and its use in optimization. ACM Transactions on
Programming Languages and Systems, 9(3):319–349, July 1987.

[15] C. Fraser and D. Hanson. A Retargetable C Compiler: Design and
Implementation. Addison-Wesley, 1990.

[16] J. Ganssle. Really real-time systems. In Proc. Embedded Systems
Conference San Francisco 2001, April 2001.

[17] Philippe Granger. Static Analysis of Arithmetical Congruences.
International Journal of Computer Mathematics, pages 165–199,
1989.

[18] Rajiv Gupta. Generalized Dominators and Post-Dominators. In POPL
’92: Proceedings of the 19th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, pages 246–257, New York,
NY, USA, 1992. ACM Press.

[19] Jan Gustafsson. Analyzing Execution-Time of Object-Oriented
Programs Using Abstract Interpretation. PhD thesis, Dept. of
Information Technology, Uppsala University, Sweden, May 2000.

[20] Jan Gustafsson, Andreas Ermedahl, and Björn Lisper. Towards a
flow analysis for embedded system C programs. In Proc. 10th IEEE
International Workshop on Object-oriented Real-time Dependable
Systems (WORDS 2005), February 2005.

[21] Jan Gustafsson, Björn Lisper, Christer Sandberg, and Nerina
Bermudo. A tool for automatic flow analysis of C-programs for
WCET calculation. In Proc. 8th IEEE International Workshop
on Object-oriented Real-time Dependable Systems (WORDS 2003),
January 2003.

[22] C. Healy, Mikael Sjödin, V. Rustagi, and David Whalley. Bounding
Loop Iterations for Timing Analysis. In Proc. 4th IEEE Real-Time
Technology and Applications Symposium (RTAS’98), June 1998.

[23] C. Healy and D. Whalley. Tighter Timing Predictions by Automatic
Detection and Exploitation of Value-Dependent Constraints. In
Proc. 5th IEEE Real-Time Technology and Applications Symposium
(RTAS’99), June 1999.

[24] N. Holsti, T. Långbacka, and S. Saarinen. Worst-Case Execution-
Time Analysis for Digital Signal Processors. In Proc. EUSIPCO
2000 Conference (X European Signal Processing Conference), 2000.

[25] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural
slicing using dependence graphs. ACM Trans. Program. Lang. Syst.,
12(1):26–60, 1990.

[26] T. Lundqvist and P. Stenström. Integrating Path and Timing
Analysis using Instruction-Level Simulation Techniques. In Proc.
ACM SIGPLAN Workshop on Languages, Compilers and Tools for
Embedded Systems (LCTES’98), June 1998.

[27] Thomas Lundqvist. A WCET Analysis Method for Pipelined
Microprocessors with Cache Memories. PhD thesis, Chalmers
University of Technology, Göteborg, Sweden, June 2002.

[28] Mälardalen University WCET project homepage, 2006.
www.mrtc.mdh.se/projects/wcet.

[29] S. S. Muchnick. Advanced Compiler Design and Implementation.
Morgan Kaufmann Publishers, 1997. ISBN: 1-55860-320-4.

[30] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program
Analysis, 2nd edition. Springer, 2005. ISBN 3-540-65410-0.

[31] Karl J. Ottenstein and Linda M. Ottenstein. The Program Dependence
Graph in a Software Development Environment. In Proc. ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, pages 177–184, 1984.

[32] M. Rodriguez, N. Silva, J. Esteves, L. Henriques, D. Costa, N. Holsti,
and K. Hjortnaes. Challenges in Calculating the WCET of a Complex
On-board Satellite Application. In Proc. 3rd International Workshop
on Worst-Case Execution Time Analysis, (WCET’2003), 2003.

[33] J. Runeson and S. Nyström. Retargetable Graph-coloring Register
Allocation for Irregular Architectures. In Proc. 7th International
Workshop on Software and Compilers for Embedded Systems
(SCOPES 03), 2003.

[34] C. Sandberg. Inspection of Industrial Code for Syntactical Loop
Analysis. In Proc. 4th International Workshop on Worst-Case
Execution Time Analysis, (WCET’2004), June 2004.

[35] Friedhelm Stappert and Peter Altenbernd. Complete worst-case
execution time analysis of straight-line hard real-time programs.
Journal of Systems Architecture, 46(4):339–355, 2000.

[36] Friedhelm Stappert, Andreas Ermedahl, and Jakob Engblom. Efficient
longest executable path search for programs with complex flows and
pipeline effects. In Proc. 4th International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems, (CASES’01),
November 2001.

[37] B. Steensgaard. Points-to Analysis in Almost Linear Time. Proc. in

23rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Jan 1996.

[38] S. Thesing. Safe and Precise WCET Determination by Abstract
Interpretation of Pipeline Models. PhD thesis, Saarland University,
2004.

[39] Tidorum. Bound-T tool homepage, 2006. www.tidorum.fi/bound-t/.

[40] Vinnova homepage, 2006. www.vinnova.se.

[41] M. Weiser. Program Slicing. IEEE Transactions on Software
Engineering, SE-10(4):352–357, July 1984.

[42] Baowen Xu, Ju Qian, Xiaofang Zhang, Zhongqiang Wu, and Lin
Chen. A Brief Survey of Program Slicing. SIGSOFT Softw. Eng.
Notes, 30(2):1–36, 2005.

