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Abstract.  This paper addresses the issue of discovering key sequences from 
time series data for pattern classification. The aim is to find from a symbolic 
database all sequences that are both indicative and non-redundant. A sequence 
as such is called a key sequence in the paper. In order to solve this problem we 
first we establish criteria to evaluate sequences in terms of the measures of 
evaluation base and discriminating power. The main idea is to accept those 
sequences appearing frequently and possessing high co-occurrences with 
consequents as indicative ones. Then a sequence search algorithm is proposed 
to locate indicative sequences in the search space. Nodes encountered during 
the search procedure are handled appropriately to enable completeness of the 
search results while removing redundancy. We also show that the key 
sequences identified can later be utilized as strong evidences in probabilistic 
reasoning to determine to which class a new time series most probably belongs. 

1   Introduction 

Data mining attains growing importance to ease the knowledge acquisition bottleneck. 
It can be defined as efficiently discovering useful knowledge and information which 
are hidden somewhere in large databases. Extracting valuable knowledge from stored 
records/examples has been recognized as a non-trivial process of identifying novel, 
valid and potentially useful data patterns, and ideally also, to understand these data 
patterns for specific purpose [3].  
   Time series data bases present a relatively new research area for data mining. 
Unlike static databases where objects are described by attributes which are time 
independent, a time series database contains profiles of time-varying variables 
wherein pieces of data are associated with a timestamp and are meaningful only for a 
specific segment in a period. Analyses of time relevant data patterns are crucial for 
acquiring necessary knowledge to understand and predict the behavior of complex, 
dynamic processes. 
   Our paper studies the problem of key sequence discovery from symbolic time series 
data. The input is a collection of pairs of time series profiles and the associated 
classes. Each time series is a list of symbols corresponding to events that occurred in 
consecutive time segments. The task is to find all non-redundant sequences that are 



evaluated as frequent and indicative in discerning certain object classes. The non-
redundancy of a sequence requires that it not contain any other sequence that has been 
identified to be indicative of the same class as it. A sequence that is both non-
redundant and indicative is termed as a key sequence. The key sequences identified 
can later be utilized as strong evidences in probabilistic reasoning to determine to 
which class a new time series most probably belongs.  
   This study was primarily motivated by our AI project in stress medicine which aims 
at diagnosis of stresses based on sensor readings collected during patient respirations.  
Experimentally a patient is investigated through a series of 40-80 breathing cycles 
(including inhalation and exhalation). The classification of dysfunctional patterns for 
each breathing cycle has been implemented in the previous work using case based 
reasoning [12]. The next step is further to estimate the category of stress according to 
the series of breathing dysfunctions detected for successive respiration cycles. Related 
medical research has revealed that certain transitions of breathing patterns over time 
may possess high co-occurrence with stress categories of interest [16]. Finding such 
sequences from time series data is thus beneficial in offering valuable information to 
support clinical diagnoses. 
   Beside, there are many other application scenarios to which the work of this paper 
would be relevant. For instance, in health monitoring of engineering equipments, 
original sensor readings can be converted into discrete symbols [15], and some critical 
changes in time series of measurements like swell, sag, impulsive transients, might be 
signs indicating a present or potential anomaly. In telecommunications, useful 
information can be obtained from sequences of alarms produced by switches for 
analysis and prediction of network faults. In defense, sequences of 
deployments/actions of enemies would possibly betray their tactical intentions. 
Finally, in a medical scenario again, a data sequence of symptoms exhibited on a 
patient may help to forecast a disease that follows the emerging symptoms. 
   Some researches into time series data mining have been conducted recently. Three 
embedding methods were proposed by [5] to transform time series data into a vector 
space for classification purpose. Keogh and his colleagues addressed the issue of 
dimensionality reduction for indexing large time series databases [9] and also for fast 
search in these databases [10]. In [20] a family of three unsupervised methods was 
suggested to identify optimal and valid features given multivariate time series data. 
Similarity mining in time series was tackled by [8] and various methods for efficient 
retrieval of similar time sequences were discussed in [2, 6, 13, 19]. Algorithms for 
mining association rules were handled in [11, 14, 18] to model and predict time series 
behaviors in dynamic systems, and the application of association mining to disclose 
stock prices relations in time series was presented in [7].  
   This paper focuses on symbolic sequential data and proposes a novel approach to 
discovery of key sequences for time series classification. The remainder of the paper 
is organized as follows. In section 2 we briefly formulate our problem and show what 
kind of data sequences are targeted at. Sequences are evaluated in section 3 for 
distinguishing indicative ones. Section 4 details a sequence search algorithm with 
simulation results. Then, in section 5, we explain the utility of the discovered 
sequences in probabilistic diagnosis and classification. Finally the paper is concluded 
with summary remarks in section 6. 



     

2   Problem Statements 

To clearly present the proposed work, we now give descriptions of the various terms 
and concepts that are related. We begin with the definitions about time series, 
sequences, and time series databases, and then we precisely formulate the problem 
this paper aims to tackle. 
   Definition 1. A time series (profile) is a series of elements occurred sequentially 
over time, )(,),.(),2(),1( nxixxxX LL= , where i indexes the time segment 
corresponding to a recorded element and n can be very large.    
   The elements x in time series can be numerical or symbolic values. Numeric values 
in time series may depict the evolution of a continuous variable as time elapsed, while 
symbolic values correspond to discrete events that happened or agent actions that 
were taken in successive time segments. In the following discussions we restrict our 
attention to symbolic time series consisting of discrete symbols.  
   Moreover, every time series profile has an inherent class. The previous time series 
data are assumed to have been classified and they are stored in a database together 
with their associated classes to facilitate data mining. A formal definition of time 
series database in the context of classification is given as follows: 
   Definition 2. A time series database is a set of pairs { }K

iii ZX 1),( =
, where Xi denotes a 

time series profile and Zi the class assigned to Xi and K is the number of time series 
cases in the database.  
   With a time series database at hand, the data mining process involves analyzing 
sequences that are included in the database. A sequence of a time series profile is 
formally described in definition 3. 
   Definition 3. A sequence S of a time series profile )(,),2(),1( nxxxX L=  is a list 
consisting of elements taken from contiguous positions of X, i.e., 

)1(,),1(),( −++= mkxkxkxS L  with nm ≤  and 11 +−≤≤ mnk . 
   Usually there is a very large amount of sequences included in the time series 
database. But only a part of them that carry useful information for estimating 
consequences are in line with our interest. Such sequences are referred to as indicative 
sequences and defined in the following: 
   Definition 4. A sequence is regarded as indicative given a time series database 
provided that  
1) it appears in sufficient amount of time series profiles of the database;  
2) the discriminating power of it, assessed upon the database, is above a specified 
threshold. 
   A measure for discriminating power together with the arguments that lie behind this 
definition will be elaborated in the next section. The intuitive explanation is that an 
indicative sequence is such a one that, on one hand, appears frequently in the 
database, and on the other hand, exhibits high co-occurrence with a certain class. 
   Obviously, should a sequence be indicative, another sequence that contains it as 
subsequence may also be indicative for predicting the outcome. However, if these 
both are indicative of the same consequent, the second sequence is considered as 
redundant with respect to the first one because it conveys no more information. 
Redundant sequences can be easily recognized by checking possible inclusion 



between sequences encountered. The goal here is to find sequences that are not only 
indicative but also non-redundant and independent of each other.  
   Having given necessary notions and clarifications we can now formally define our 
problem to be addressed as follows: 
   Given a time series database consisting of time series profiles and associated 
classes, find a set of indicative sequences {S1, S2, …, Sp} that satisfy the following two 
criteria:   
1) For any i, j∈{1, 2, …p} neither Si⊆Sj nor Sj⊆Si if Si and Sj are indicative of a same 
consequent; 
2) For any sequence S that is indicative, S∈{S1, S2, …, Sp} if  S is not redundant with 
respect to Sj  for any j∈{1, 2, …p}. 
   The first criterion above requests compactness of the set of sequences {S1, S2, …, Sp} 
in the sense that no sequence in it is redundant by having a subsequence indicative of 
the same consequent as it. A sequence that is both indicative and non-redundant is 
called a key sequence. The second criterion further requires that no single key 
sequence shall be lost, which signifies a demand for completeness of the set of key 
sequences to be discovered. 

3   Evaluation of Single Sequences 

This section aims to evaluate individual sequences to decide whether one sequence 
can be regarded as indicative. The main thread is to assess the discriminating power 
of sequences in terms of their co-occurrence relationship with possible time series 
classes. In addition we also illustrate the importance of sequence appearing 
frequencies in the database for ensuring reliable assessments of the discriminating 
power. 
   Given a sequence S there may be a set of probable consequent classes {C1, C2, …, 
Ck}. The strength of the co-occurrence between sequence S and class Ci (i=1…k) can 
be measured by the probability, )|( SCp i , of Ci conditioned upon S. Sequence S is 
considered as discriminative in predicting outcomes as long as it has a strong co-
occurrence with either of the possible outcomes. The discriminating power of S is 
defined as the maximum of the strengths of its relations with probable consequents. 
Formally this definition of discriminating power PD is expressed as:  
 

)|(max)(
1

SCPSPD iki L=
=  (1) 

In addition we say that the class yielding the maximum strength of the co-
occurrences, i.e., )(maxarg

1
SCPC i

ki L=
= , is the consequent that sequence S is 

indicative of. 
   The conditional probabilities in (1) can be derived according to the Bayes theorem 
as: 
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As the probability P(S) is generally obtainable by 

)()|()()|()( iiii CPCSPCPCSPSP +=  (3) 

equation  (2) for conditional probability assessment can be rewritten as 
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   Our aim here is to yield the conditional probability )|( SCP i  in terms of equation 
(4). As P(Ci) is a priori probability of occurrence of Ci which can be acquired from 
domain knowledge or approximated by experiences with randomly selected samples, 
the only things that remain to be resolved are the probabilities of S in (time series) 
cases having class Ci  and in cases not belonging to class Ci respectively. Fortunately 
such probability values can be easily estimated by resorting to the given database. For 
instance we use the appearance frequency of sequence S in class Ci cases as an 
approximation of )|( iCSP , thus we have: 
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where N(Ci) denotes the number of cases having class Ci in the database and N(Ci, S) 
is the number of cases having both class Ci and sequence S. Likewise the probability 

)|( iCSP  is approximated by  
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with N( iC ) denoting the number of cases not having class Ci and N( iC ,S) being the 
number of cases containing sequence S  but not belonging to class Ci. 
   The denominator in (4) has to stay enough above zero to enable reliable probability 
assessment using the estimates in (5) and (6). Hence it is crucial to acquire an 
adequate amount of time series cases containing S in the database. The more such 
cases available the more reliably the probability assessment could be derived. For this 
reason we refer the quantity ),(),()( SCNSCNSN ii +=  as evaluation base of 
sequence S in this paper. 
   At this point we realize that two requirements have to be satisfied for believing a 
sequence to be indicative of a certain class. Firstly the sequence has to possess an 
adequate evaluation base by appearing in a sufficient amount of time series cases. 
Obviously a sequence that occurred randomly in few occasions is not convincing and 
can hardly be deemed significant. Secondly, the conditional probability of that class 
under the sequence must be dominatingly high, signifying a strong discriminating 
power. These explain why indicative sequence is defined by the demands on its 
appearance frequency and discriminating power in definition 4.  



   In real applications two minimum thresholds need to be specified for the evaluation 
base and discriminating power respectively, to judge sequences as indicative or not. 
The values of these thresholds are domain dependent and are to be decided by human 
experts in the related area. The threshold for discriminating power may reflect the 
minimum probability value that suffices to predict a potential outcome in a specific 
scenario. The threshold for the evaluation base indicates the minimum amount of 
samples required to fairly approximate the conditional probabilities of interest. Finally 
only those sequences that pass both thresholds are evaluated as indicative ones.  

4   Discovering a Complete Set of Key Sequences 

With the evaluation of sequences being established, we now turn to exploration of 
qualified sequences in the problem space. The goal is to locate all key sequences that 
are non-redundant and indicate. We first detail a sequence search algorithm for this 
purpose in subsection 4.1 and then we demonstrate simulation results on a synthetic 
database with the proposed algorithm in subsection 4.2. 

4.1   A Sequence Search Algorithm  

Discovery of key sequences can be considered as a search problem in a state space in 
which each state represents a sequence of symbols. Connection between two states 
signifies an operator between them for transition, i.e. addition or removal of a single 
symbol in time sequences. The state space for a scenario with three symbols a, b, c is 
illustrated in Fig. 1, where an arc connects two states if one can be created by 
extending the sequence of the other with a following symbol. 
 
 

   [  ] 

   [ a ]   [ b ]   [ c ] 

 [ ab ]  [ ac ]  [ ba ]  [ bb ]  [ bc ]  [ ca]  [ aa ]  [ cb ]  [ cc ] 

 
Fig. 1.  The state space for sequences with three symbols 

 



     

   A systematic exploration in the state space is entailed for finding a complete set of 
key sequences. We start from a null sequence and generate new sequences by adding 
a single symbol to parent nodes for expansion. The child sequences are evaluated 
according to evaluation bases and discriminating powers. The results of evaluation 
determine the way to treat each child node in one of the following three situations: 

i) If the evaluation base of the sequence is under a threshold required for 
conveying reliable probability assessment, terminate expansion at this node. The 
reason is that the child nodes will have even smaller evaluation bases by 
appearing in fewer cases than their parent node;  

ii) If the evaluation base and discriminating power are both above their respective 
thresholds, do the redundancy checking for the sequence against the list of key 
sequences already identified. The sequence is redundant if at least one known 
key sequence constitutes its subsequence while both remaining indicative of the 
same consequent. Otherwise the sequence is considered as non-redundant and 
hence is stored into the list of key sequences together with the consequent it 
indicates. After that this node is further expanded with the hope of finding, 
among its children, qualified sequences that might be indicative of other 
consequents; 

iii)  If the evaluation base is above its threshold whereas the discriminating power 
still not reaching the threshold, continue to expand this node with the hope of 
finding qualified sequences among its children. 

   The expansion of non-terminate nodes are proceeded in a level-by-level fashion. A 
level in the search space consists of nodes for sequences of the same length and only 
when all nodes at a current level have been visited does the algorithm move on to the 
next level of sequences having one more symbol. This order of treating nodes is very 
beneficial for redundancy checking because a redundant sequence will always be 
encountered later than its subsequences including the key one(s) during the search 
procedure. 
   From a general structure, the proposed sequence search algorithm is a little similar 
to the traditional breadth-first procedure. However, there are still substantial 
differences between both. The features distinguishing our search algorithm are: 1) it 
does not attempt to expand every node encountered and criteria are established to 
decide whether exploration needs to be proceeded at any given state; 2) it presumes 
multiple goals in the search space and thus the search procedure is not terminated 
when a single key sequence is found. Instead the search continues on other 
prospective nodes until none of the nodes in the latest level needs to be expanded. A 
formal description of the proposed search algorithm is given as follows:  

   Algorithm for finding a complete set of key sequences 
1. Initialize the Open list with an empty 
sequence. 

2. Initialize the Key_List to be an empty 
list. 



3.  Remove the most left node t from the Open 
list. 

4.  Generate all child nodes of t  

5.   For each child node, C(t), of the parent 
node t 

a) Evaluate C(t) according to its 
discriminating power and evaluation base; 

b) If the evaluation base and discriminating 
power are both above their respective 
thresholds, do the redundancy checking for 
C(t) against the sequences in the Key_list. 
Store C(t) into the Key_list if it is judged 
as not redundant. Finally put C(t) on the 
right of the Open list. 

c)If the evaluation base of C(t) is above its 
threshold but the discriminating power is not 
satisfying, put C(t) on the right of the Open 
list. 

6. If the Open list is not empty go to step 3, 
otherwise return the Key_list and terminate 
the search. 

   Finally it bears mentioning that finding key sequences in our context differs from 
those [1, 4, 17] in the literature of sequence mining. Usually the goal in sequence 
mining is merely to find all legal sequential patterns with their frequencies of 
appearances above a user-specified threshold. Here we have to consider the cause-
outcome effect for classification purpose. Only those non-redundant sequences which 
are not only frequent but also possess strong discriminating power will be selected as 
the results of search. 

4.2   Simulation Results  

To verify the feasibility of the mechanism addressed above we now present the 
simulation results on a synthetic database. A case in this database is depicted by a 
time series of 20 symbols and one diagnosis class as the outcome. A symbol in a time 
series belongs to {a, b, c, d, e} and a diagnosis class is either 1, 2, or 3. The four key 
sequences assumed are [a d c], [b c a], [d e b], and [e a e]. The first two sequences 
were supposed to have strong co-occurrences with class 1 and the third and fourth 
exhibit strong co-occurrences with classes 2 and 3 respectively. Each time series in 



     

the database was created in such a way that both sequences [a d c] and [b c a] had a 
chance of 80% of being reproduced once in the time series of class 1 while sequences 
[d e b] and [e a e] were added into class 2 and class 3 cases respectively with a 
probability of 90%. After stochastic reproduction of these key sequences, the 
remaining symbols in the time series of all cases were generated randomly. The whole 
database consists of 100 instances for each class. Presuming such time series cases to 
be randomly selected samples from a certain domain, a priori probability of each class 
is believed to be one third. 
   The sequence search algorithm was applied to this database to find key sequences 
and potential co-occurrences hidden in the data. The threshold for the discriminating 
power was set at 70% to ensure an adequate strength of the relationships discovered. 
We also specified 50 as the threshold of the evaluation base for reliable assessment of 
probabilities. The sequences found in our test are shown in table 1 below. 

Table 1. Sequences discovered on a synthetic database 

Sequence 
Discovered Discriminating power Evaluation base Dominating 

Consequent 
[a d c] 76.70% 103 Class 1 
[b c a] 78.22% 101 Class 1 
[d e b] 73.39% 124 Class 2 
[e a e] 83.18% 107 Class 3 

 
   As seen from table 1 we detected all the four key sequences previously assumed. 
They were recognized to potentially cause the respective consequents with 
probabilities ranging from 73.39% to 83.18%. These relationships with a degree of 
uncertainty are due to the many randomly generated symbols in the database such that 
any sequence of symbols is more or less probable to appear in time series of any class. 
But such nondeterministic property is prevalent in many real world domains. 

5   Applying Key Sequences in Probabilistic Reasoning  

The discovered key sequences are treated as significant features in capturing dynamic 
system behaviors. Rather than enumerating what happened in every consecutive time 
segment, we can now characterize a dynamic time series in terms of what key 
sequences it includes as well as how many times each included key sequence has 
occurred. Further, as the key sequences have strong co-occurrences with a certain 
class, they can be used as discriminative evidences to update our beliefs concerning 
probabilities of classes an unknown time series may belong to. 
   Given a new time series X to be classified, the first task is characterization of the 
series according to the set of key sequences, say {S1, S2, …, Sp}.  Hence X has to be 
scanned thoroughly to detect all occurrences of key sequences in it. Every appearance 
of a key sequence Sj (j=1…P) in X is treated as an evidence for brief updating in 
classification. In view of this, the time series X can be characterized by a collection of 
evidences, i. e. { }TeeeXEV ,,,)( 21 L=  with ),,{ 1 Pi SSe L∈  for any i from 1 to T.  



Important to note is that it is possible to have ji ee =  for ji ≠ , implying that a key 
sequence appearing in X  more than once is considered to cause multiple evidences.  
   The next task is to update the probabilities of different classes using detected 
evidences to reduce the uncertainty. Assuming conditional independence of key 
sequences occurrences under any class, the evidences available can be utilized 
separately for probability updating in individual steps. At every step we use a single 
evidence to revise prior probabilities according to the Bayes theorem and these 
updated probability estimates are then propagated as prior beliefs to the next step. 
Considering a two class problem without loss of generality, the procedure of 
probability updating using a set of evidences { }Teee ,,, 21 L  is depicted by a series of 
equations as follows: 
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where the probabilities )( CeP i
 and )( CeP i

 for i∈{1,…,T} can be estimated 

according to equations (5) and (6) respectively, as ei is a sequence. The probability 
updated in equation (7) represents the probability for class C given evidence e1, which 
is further updated in equation (8) by evidence e2 producing a more refined belief 
considering both e1 and e2. Generally the probability ),,|( 1 ieeCP L  is yielded by 
updating the prior probability ),,|( 11 −ieeCP L with a new evidence ei in equation (9). 
Finally we obtain the ultimate probability assessment incorporating all available 
evidences by equation (10). 
   We now give a concrete example to illustrate how the above sequential procedure 
works in probability refinements using key sequence appearances as evidences. 
Consider a problem of classifying a time series X into one of the two classes. Suppose 
that two key sequences S1 and S2 are detected in X and both are indicative of a certain 
class C. The a priori probability of class C is 50% and the probabilities of sequences 
S1, S2 in situations of class C and its complementary are shown below: 
                                      56.0)( 1 =CSP                    24.0)( 1 =CSP  



     

                                      80.0)( 2 =CSP                   40.0)( 2 =CSP  

   Further we assume that sequence S1 appears twice in X and S2 appears once, hence 
the collection of evidences for X is notated as { }211 ,,)( SSSXEV = . With these three 
evidences detected, the probability of class C for time series X is refined gradually in 
the following three steps: 
Step 1:  Update the a priori probability P(C) with the first appearance of S1 by 
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Step 2:  Refine the probability updated in step 1 with the second appearance of S1, 
thus we have 
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It is clearly seen that the belief in class C is increased from 0.70 to 0.8448 due to the 
key sequence occurring for the second time. 
Step 3: Refine the probability updated in step 2 with the occurrence of S2, and we 
acquire the final probability assessment taking into account all evidences by 
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Here, the appearance of S2 makes the probability be enhanced to an even higher value 
of 0.9159. As both sequences S1 and S2 are consistent in being indicative of the same 
consequence, each appearance of them contributes to increase the probability of C 
with a certain extent. 
   At last let us consider the order in which single evidences are used to refine 
probability assessments. This seems a fundamental issue and involves allocation of 
evidences to different steps of a sequential procedure. Fortunately our study has 
clarified that the order of evidences used in probability updating is completely 
indifferent. The final probability value remains constant as long as each piece of 
evidence is assigned to a distinct step. The claims as such are formally based on the 
following theorems. 
   Lemma: Let { }Tee L,1  be a set of evidences representing appearances of the key 
sequences in a time series X. The final probability for X in class C is not affected if 
two adjacent evidences exchange their positions in the order of evidences used for 
probability refinements. This means that the relation 

},,,,(},,,,( 1111 TiiTii eeeeCPeeeeCP LLLL ++ =  holds for i∈{1,…T-1}. 
   A proof of the lemma is given in the appendix. Contemplating the implication of 
this lemma led us to a corollary presented below. 
   Corollary: Let { }Tee L,1  be a set of evidences representing appearances of the 
key sequences in a time series X. The final probability for X in class C is independent 
of the order according to which single evidences e1, e2, …,  eT , are used in probability 
refinements. 



   The proof of the above corollary is obvious. According to the lemma, an element in 
a given order of evidences can be moved to an arbitrary position by repeatedly 
exchanging its position with an adjacent one while not affecting the final probability 
assessments. As this can be done to every piece of evidence, we enable transitions to 
any orders of evidences without altering the classification result.  
   This corollary is important in providing theoretic arguments allowing for an 
arbitrary order of sequences to be used in probability refinement based on the Bayes 
theorem. The connotation is that when a key sequence occurred in the time series does 
not matter for the final result of classification. Instead only the numbers of 
appearances of key sequences effect our beliefs concerning the likelihoods of 
probable outcomes. 

6   Conclusion 

This paper tackles discovery of key sequences for time series data classification. The 
input is a symbolic database which consists of pairs of time series profiles and their 
associated classes. The problem is to find from the database a complete set of 
sequences that are both indicative and non-redundant. A sequence as such is called a 
key sequence in the paper. 
   Novel solutions are suggested here to deal with this problem. First we establish 
criteria to evaluate sequences in terms of the measures of evaluation base and 
discriminating power. The main idea is to accept those sequences appearing 
frequently and possessing high co-occurrences with consequents as indicative ones. 
Secondly a sequence search algorithm is proposed for exploration of indicative 
sequences in the problem space. One property of the search algorithm is that it always 
visits nodes of longer sequences after nodes of shorter ones such that redundant 
sequences can be detected easily for exclusion. The other property is that it terminates 
expansion only at the nodes where there is no prospect to find qualified sequences 
from their off-springs, guaranteeing the completeness of the search results.  
   The discovered key sequences are considered as important features in characterizing 
time series cases. We show that appearances of key sequences in time series can be 
used as evidences in probabilistic reasoning. A sequential procedure is presented to 
update beliefs for classification using found evidences. We also demonstrate that the 
order in which single evidences are used for brief refinements is indifferent to the 
final results.    

Appendix: Proof of the Lemma 

For proof of the lemma with the statement that 
},,,,,,(},,,,,,( 111111 TiiiTiii eeeeeCPeeeeeCP LLLL +−+− = , we only need to 

establish the relation for },,,,(},,,,( 111111 iiiiii eeeeCPeeeeCP +−+− = LL , which is 
equivalent to the lemma.  



     

   We start to consider the probability },,( 11 +ii eeeCP L which is acquired by updating 

the prior brief },( 1 ieeCP L  with a new evidence ei+1, hence it can be written as 
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Further the probability ),,( 1 ieeCP L  is formulated by taking ),,( 11 −ieeCP L  as its 
prior estimate such that 
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Likewise we obtain 
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Combining (12) and (13) into equation (11) gives rise to a transformed formulation as 
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   Next we express the conditional probabilities )( 1 CeP i+
, )( 1 CeP i+ , )( CeP i

, )( CeP i
 

with their Bayes forms by 
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where )(CP  and )(CP  denote the initial probability estimates for class C and its 
complementary without any evidences. Using the Bayes forms from (15) to (18), 
equation (14) is finally rewritten as 
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Clearly we see from equation (19) that the order between ei and ei+1 has no effect at all 
on the probability ),,,( 11 +ii eeeCP L  assessed. It follows that 

),,,,(),,,,( 111111 iiiiii eeeeCPeeeeCP +−+− = LL  (20) 

and here from  the lemma is proved. 
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