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Abstract. The use of software component models has become popu-
lar during the last decade, in particular in the development of software
for desktop applications and distributed information systems. However,
such models have not been widely used in the domain of embedded real-
time systems. There is a considerable amount of research on component
models for embedded real-time systems, or even narrower application
domains, which focuses on source code components and statically con-
figured systems. This paper explores an alternative approach by laying
the groundwork for a component model based on binary components
and targeting the broader domain of embedded real-time systems. The
work is inspired by component models for the desktop and information
systems domains in the sense that a basic component model is extended
with a set of services for the targeted application domain. A prototype
tool for supporting these services is presented and its use illustrated by
a control application.

1 Introduction

The use of software component models has become increasingly popular during
the last decade, especially in the development of software for desktop applications
and distributed information systems. Popular component models include Jav-
aBeans [5] and ActiveX [4] for desktop applications and Enterprise JavaBeans
(EJB) [11] and COM+ [15] for distributed information systems. In addition to
basic standards for naming, interfacing, binding, etc., these models also define
standardized sets of run-time services oriented towards the application domains
they target. Unlike for these domains, there has been no widespread use of soft-
ware component models in the domain of real-time and embedded systems, pre-
sumably due to the special requirements such systems have to meet with respect
to timing predictability and limited use of resources. Much research has therefore
been directed towards defining new component models for real-time and embed-
ded systems. Typically, such models are based on static configurations of source
code components and target relatively narrow application domains. Examples
include the Koala component model for consumer electronics [22], PECOS for
industrial field devices [6], and SaveCCM for vehicle control systems [7].



An alternative approach is to strive for a component model based on binary
components and targeting a broader domain of applications, similar to the do-
main targeted by a typical real-time operating system. The approach pursued
in this paper is to provide a combination of restrictions and extensions of an
existing component model to adapt it to our target domain. Adapting an exist-
ing component model has several advantages: It may be possible to use existing
(integrated) development environments; existing components can be re-used or
adapted for the real-time domain; integration with application from other do-
mains becomes significantly simpler, and so on.

Our previous work has demonstrated that the key concepts of the Component
Object Model (COM) [3] can be used with advantage in the development of an
embedded real-time system [10]. A study of COM and its extension Distributed
COM (DCOM) [17] shows that these models are not inherently incompatible
with real-time requirements, although some restrictions on how the models are
used may be necessary to ensure predictability [9]. Some reasons that COM is an
attractive starting point are that the model is relatively simple, commercial COM
implementations are already available for a few real-time operating systems,
and COM is already well-known and accepted in industry. The goal of this
paper is to lay the groundwork for a software component model for embedded
real-time systems by using the basic concepts of COM as the starting point
and extending the basic model with standardized services of general use for this
application domain, much like COM+ extends COM with services for distributed
information systems.

The remainder of the paper is organized as follows. In Section 2 we clarify
what we mean by software component services and identify some useful services
for embedded real-time systems. Section 3 is an overview of a prototype tool we
are developing to support such services, including an example control application
to demonstrate the use of the tool. Related work is reviewed in Section 4 and
conclusions and some ideas for further work are presented in Section 5.´

2 Component Services

In this paper we define component services as solutions to common problems
that can be added to components without modifying them and with little or
no adaptation of application code. This is similar to the concept of component
services in EJB and COM+, where examples of services include transaction
control, data persistence, and security. Our focus is on services that address
common challenges in embedded real-time systems, including logging, synchro-
nization, and timing control. Traditionally, such functions have to be hand coded
and off line deduced using complex theories, which can be very time consuming
and sometimes impossible in complex industrial systems. If third party compo-
nents are used, it may also be impossible to implement functions by modifying
the components. In the following subsections we describe some of the services
we have identified in more depth and outline how they may be implemented.
In general, we propose that services are implemented through the use of proxy



Fig. 1. Implementing a logging service through a proxy object

objects, which are automatically generated from configuration files written in an
XML based format.

2.1 Logging

A logging service allows the sequence of interactions between components to
be traced. Our suggested solution for achieving this is to use a proxy object as
illustrated in the UML class diagram in Fig. 1. In the diagram, the object C2
implements an interface IC2 for which we wish to apply a logging service. A
proxy object that also implements IC2 is placed between C2 and a client that
uses the operations exposed through IC2. The operations implemented by the
proxy forward all invocations to the corresponding operations in C2 in addition
to writing information about parameter values, return codes, and invocation and
return times to some logging medium. To add logging of all operation invocations
through an interface, we simply add an entry in the configuration file:

<application>

...

<component name="myProject.C2">

<interface name="IC2">

<service type ="Logging"/>

</interface>

</component>

...

</application>

No programming is required in the client C1 or the component C2. To add
logging only for a particular operation, the entry is modified as follows:

<interface name="IC2">

<operation name="DoSomething">

<service type ="Logging"/>

</operation>

</interface>



2.2 Execution Time Measurement

This service allows operation invocations to be monitored and information about
execution times accumulated. Different measurements, such as worst-case, best-
case, and average execution time may be collected. A possible use of the infor-
mation is to dynamically adapt an on-line scheduling strategy. The suggested
solution is to use a forwarding proxy that measures the time elapsed from each
operation call till it returns and collects the desired timing information. As with
the logging service, the time measurement service is specified in the configuration
file:

<interface name="IC2">

<service type="Timing">

<measurement type="Mean" />

<measurement type="Worst"/>

</service>

</interface>

Again, no programming is required.

2.3 Synchronization

A synchronization service allows components that are not inherently thread-
safe to be used in multi-threaded applications. The suggested solution is to use
forwarding proxies that use the basic mechanisms of the underlying operating
system to implement the desired synchronization policies. A synchronization
policy may be applied to a single operation or to a group of operations, e.g.
all operations of an interface or a component. Several different policies may be
useful and will be described further in this section. Most synchronization policies
rely on blocking and it may be useful to combine such policies with timeouts
to limit blocking time. If the blocking time for an operation call reaches the
timeout limit, the proxy return an error without forwarding the call. A more
advanced timeout policy is one where the proxy tries to determine if a call can
be satisfied without violating the timeout limit a priori and, if not, returns an
error immediately.

The simplest synchronization policy is mutual exclusion, which blocks all
operation calls except one. After the non-blocked call completes, the waiting
calls are dispatched one by one according to the priority policy. This policy may
be applied merely by adding an entry in the configuration file but, if timeouts
are used, the client should be able to handle the additional error codes that may
arise. Another class of synchronization policies is different reader/writer policies.
These differs from the previously described policy in that any number of calls
to read operations may execute concurrently, while each call to write operations
has exclusive execution. Thus, the operations subjected to a reader/writer policy
must be classified as either writer or reader operations, depending on whether
they may modify state or not. Concurrent read calls are scheduled according to
their priorities.



Using this policy requires that it be specified for each operation whether it is
a read or write type of operation. This can be done in the component specifica-
tion (e.g. a COM IDL file) or in the configuration file. If this is left unspecified
for an operation, the proxy must assume it may write data. No programming is
required, except possibly to handle error codes resulting from timeouts. For all
synchronization policies, we may select if the priority of the dispatching thread
should be the same as the calling thread, or explicitly specified in the configu-
ration file. A specification of a reader/writer policy may look as follows:

<interface name="IC2">

<service type="Synchronization" policy="RWPolicyX"/>

<operation name="DoSomething" type="Write"/>

<operation name="WriteData" type="Write"/>

<operation name="ReadData" type="Read" />

</interface>

2.4 Execution Timeout

This service can be used to ensure that a call to a component´s operation always
terminate within a specified deadline, possibly signaling a failure if the operation
could not be completed within that time. The solution is to use a proxy that
that use a separate thread to forward each operation call and then wait until
either that thread terminates or the deadline expires. In the latter case the
proxy signals the failure by returns an error code. Also, it is possible to specify
different options for what should be done with the thread of the forwarded call
if the deadline expires. The simplest option is to forcefully terminate the thread,
but this may not always be safe since it may leave the component in an undefined
and possibly inconsistent state. Another option is to let the operation call run
to completion and disregard its output. Obviously, using this service requires
that the client is able to handle timeouts. Again, the service is specified in the
configuration file:

<interface name="IC2">

<service type="Timeout" deadline="10ms" fail="Terminate"/>

</interface>

2.5 Vertical Services

In addition to the type of services discussed above, which we believe are generally
useful for embedded real-time systems, one can imagine many services aimed at
more specific application domains, often called vertical services [8]. Among the
services we have considered are cyclic execution, which are much used in process
control loops [1], and support for redundancy mechanisms such as N-version
components, which are useful in fault-tolerant systems [2]. The prototype tool
presented in the next section includes an implementation of a cyclic execution
service.



Fig. 2. Generating a proxy object for a component service

3 Prototype Tool

This section outlines a prototype tool we are developing that adds services to
COM components on Microsoft Windows CE. The tool generates source code for
proxy objects implementing services by intercepting method calls to the COM
objects. The tool takes as inputs component specifications along with a spec-
ification of the desired services for each component. Component specifications
may be in the form of Interface Definition Language (IDL) files or their binary
equivalent Type Library (TLB) files. Desired services are either specified in a
separate file using an XML-based format or in the tool´s graphical user interface,
described further below. Note that access to component source code is not re-
quired. Based on these inputs, the tool generates a complete set of files that can
be used with Microsoft eMbedded Visual C++ (sic) to build a COM component
implementing the proxy objects (i.e., the proxies are themselves COM objects).
This process is depicted in Fig. 2.

3.1 Design Consideration

The use of proxy objects for interception is heavily inspired by COM+. However,
rather than to generate proxies at run-time, we suggest that these are generated
and compiled on a host computer (typically a PC) and downloaded to the em-
bedded system along with the application components. There, the proxy COM
classes must be registered in the COM registry in such a way that proxy objects
are placed between interacting application components. This process may occur



when the software is initially downloaded to the system or as part of dynamic
reconfiguration of a system that supports this. In the latter case, one can imagine
updating or adding proxies without updating or adding any application compo-
nents. The current version of the tool only generates proxy code and does not
address the registration and run-time instantiation of components. This means
that the client code must instantiate each proxy along with the affected COM
object and set up the necessary connection between them. A desirable improve-
ment would be to automate this task, either by generating code that performs
setup for each proxy object or by extending the COM run-time environment
with a general solution.

We consider staying as close as possible to the original COM and COM+ con-
cepts an important design goal for the tool. Another goal is that the programmer
or integrator should be able to choose desired services for each component with-
out having to change the implementation or doing any programming. There are
however cases, e.g. when adding invocation timeouts, where there is a need for
adapting the code of the client component to fully benefit from the service. Spe-
cific to COM is that a component is realized by a set of COM classes that,
in turn, each implements a number of interfaces. All interfaces have a method
called QueryInterface that allows changing from one interface to another on the
same COM class. Since each proxy is implemented by a COM class, which must
satisfy the definition of QueryInterface, we must generate one proxy for each
COM class to which we wish to add any services.

3.2 Supported Services

Fig. 3 shows the graphical user interface of the tool. After a TLB or IDL file
has been loaded all COM classes defined in the file are listed. Checking the
box to the left of a COM class causes a proxy for that class to be generated
when the button at the bottom of the tool is pressed. Under each COM class,
the interfaces implemented by the class is listed and, under each interface, the
operations implemented by the interface. In addition, the available services are
listed with their names set in brackets. Checking the box to the left of a service
causes code to be generated that provides the service for the element under
which the service is listed. In the current version of the tool, a service for cyclic
execution may only be specified for the IPassiveController interface (see example
below), while all other services may only be specified for individual operations.
Checking the box to the left of an interface or operation is simply a quick way
of checking all boxes further down in the hierarchy.

If the cyclic execution service is checked, the proxy will implement an inter-
face called IActiveController instead of IPassiveController (see example below).
Checking the logging service results in a proxy that logs each invocation of the
affected operation. The timing service causes the proxy to measure the execu-
tion time of the process and write it to the log at each invocation (if timing
is checked but not logging, execution times will be measured but not saved).
The synchronization service means that each invocation of the operation will
be synchronized with all other invocations of all other operations on the proxy



Fig. 3. The graphical user interface of the prototype tool

object for which the synchronization service is checked. The only synchroniza-
tion policy currently supported is mutual exclusion. The timeout service has a
numeric parameter. When this service is selected (by clicking the name rather
than the box) as in Fig. 3, an input field marked Milliseconds is visible near the
bottom of the tool. Checking the service results in a proxy where invocations
of the operation always terminate within the specified number of milliseconds.
In the case that the object behind the proxy does not complete the execution
of the operation within this time, the proxy forcefully terminates the execution
and returns en error code.

3.3 Example Application

To illustrate the use of the tool we have implemented a component that encap-
sulates a digital Proportional-Integral-Differential (PID) controller [1]. For the



Fig. 4. An application using a controller component without services

purpose of comparison, we first implemented a component that does not rely
on any services provided by the tool. Fig. 4 shows the configuration of a an
application that uses this component. PIDController is a COM class that im-
plements an interface IActiveController and relies on the two interfaces ISensor
and IActuator to read and write data from/to the controlled process. For the
purpose of this example, these interfaces are implemented by the simple COM
class DummyProcess that does nothing except returning a constant value to the
controller. The interfaces are defined as follows:

interface ISensor : IUnknown {

[propget] HRESULT ActualValue([out, retval] double *pVal);

};

interface IActuator : IUnknown {

[propget] HRESULT DesiredValue([out, retval] double *pVal);

[propput] HRESULT DesiredValue([in] double newVal);

};

interface IController : IActuator {

[propget] HRESULT SensorInterface([out, retval] ISensor **pVal);

[propput] HRESULT SensorInterface([in] ISensor *newVal);

[propget] HRESULT ActuatorInterface([out, retval] IActuator **pVal);

[propput] HRESULT ActuatorInterface([in] IActuator *newVal);

[propget] HRESULT CycleTime([out, retval] double *pVal);

[propput] HRESULT CycleTime([in] double newVal);

[propget] HRESULT Parameter(short Index, [out, retval] double *pVal);

[propput] HRESULT Parameter(short Index, [in] double newVal);

};

interface IActiveController : IController {

[propget] HRESULT Priority([out, retval] short *pVal);

[propput] HRESULT Priority([in] short newVal);

HRESULT Start();

HRESULT Stop();

};



IController is a generic interface for a single-variable controller with config-
urable cycle time and an arbitrary number of control parameters. PIDController
uses three parameters for the proportional, integral, and differential gain. IAc-
tiveController extends this interface to allow control of the controller´s execution
in a separate thread. The reason for splitting the interface definitions like this is
that we wish to reuse IController for a controller that uses our cyclic execution
service rather than maintaining its own thread. Note that IController inherits
the DesiredValue property from IActuator. This definition is chosen to allow the
interface to be used for cascaded control loops where the output of one controller
forms the input to another.

The test application TestControl1.exe creates one instance of PIDController
and one instance of DummyController. It then connects the two objects by set-
ting the SensorInterfaca and ActuatorInterface properties of the PIDController
object. After this it sets the cycle time and the control parameters before in-
voking the Start operation. This causes the PIDController object to create a
new thread that executes a control loop. A simple timing mechanism is used to
control the execution of the loop in accordance with the cycle time property.
At each iteration the loop reads a value from the sensor interface, which it uses
in conjunction with the desired value, the control parameters, and an internal
state based on previous inputs to compute and write a new value to the actuator
interface. To minimize jitter (input-output delay as well as sampling variability),
this part of the loop uses internal copies of all variables, eliminating the need
for any synchronization.

Next, the control loop updates its internal variables for subsequent itera-
tions. Since the desired value and the control parameters may be changed by the
application while the controller is running, this part of the loop uses a mutual
exclusion mechanism for synchronization. In addition to performing its control
task the loop timestamps and writes the sensor and actuator data to a log. The
control loop is illustrated by the following pseudo code:

while (Run) {

WaitForTimer();

ReadSensorInput();

ComputeAndWriteActuatorOutput();

WriteDataToLog();

WaitForMutex();

UpdateInternalState();

ReleaseMutex();

}

Note that, due to the simple timing mechanism, the control loop will halt unless
all iterations complete within the cycle time.

Next, we implemented a component intended to perform the same function,
but relying on services provided by generated proxies. A test application using
this component and generated proxies is shown if Fig. 5. In this application,
PIDController is a COM class that implements the IPassiveController interface.
Note that, although this COM class has the same human readable name as in



Fig. 5. An application using a controller component with services

the application described above, it has a distinct identity to the COM run-time
environment. To avoid confusion we use the notation Control2.PIDController
when appropriate. IPassiveController extends IController as follows:

interface IPassiveController : IController {

HRESULT UpdateOutput();

HRESULT UpdateState();

};

These operations are used by the PIDController Proxy object to implement a
control loop that performs the same control task as in the previous example.

PIDController Proxy was generated with the use of the tool by checking the
cyclic execution service under the Control2.PIDController´s IPassiveController
interface and the synchronization service under the UpdateState operation as
well as the operations for accessing the desired value and the control param-
eters. The DummyProcess Proxy provides the interface pointers for the con-
troller´s SensorInterface and ActuatorInterface properties. Behind this proxy is
a DummyProxecess object with the same functionality as in the previous exam-
ple. DummyProcess Proxy was generated by the tool with the logging service
checked. As a result, all data read and written via the sensor and actuator
interfaces are logged. The interfaces ISensor Proxy, IActuator Proxy and IPID-



Controller Proxy are only used to set up the connections between proxies and
other objects. They are defined as follows:

interface ISensor_Proxy : IUnknown {

HRESULT Attach([in] ISensor *pTarget);

};

interface IActuator_Proxy : IUnknown {

HRESULT Attach([in] IActuator *pTarget);

};

interface IPIDController_Proxy : IUnknown {

HRESULT Attach([in] IPassiveController *pTarget);

};

In order to evaluate to two test applications we built and executed them on
the Windows CE 4.0 Emulator. Since the timing accuracy on the emulator is 10
milliseconds, it was not possible to measure any timing differences between the
two applications. In both cases the controller worked satisfactory for cycle times
of 20 milliseconds or more (the measured input-output delay as well as sampling
variability was zero—from which we can only conclude that the actual times are
closer to zero than 10 milliseconds). For shorter cycle times, both controllers
ultimately halted since the limited timer accuracy caused the control loop to fail
to complete its execution before the start of the next cycle. Also, we were not
able to see any systematic difference in memory usage for the two applications.
Clearly, further evaluation of the effects of the services on timing and memory
usage is desirable.

To estimate the difference in programming effort and code size for the two
applications we compared the amounts of source code and sizes of compiled
files. These size metrics for the various components are presented in Table 1.
The middle column shows the number of non-empty lines of source code. For
the first three components, the number only include the source code of the
C++ classes implementing the COM objects, i.e. the automatically generated
code included in all COM components is not included. Taking these numbers as
(admittedly primitive) measurements of programming effort, we see that using
the tool to generate service proxies has resulted in a saving of 127 lines or 42 per
cent. On the other hand, we see that the effort required for the client program
is substantially greater in the case where the proxies are used. This is due to
the need for the program to set up the connections between the proxies and the
other objects. We conclude that the usefulness of our approach would greatly
benefit from automation of this task.

As for the code size, there is only a small difference between the three COM
components, leading to an overhead of roughly 100 per cent from using the
proxies. This is largely due to the fact that the implemented COM objects are
relatively small, leading to the obligatory house-keeping code of all COM compo-
nents taking up a large percentage of the code size. For larger COM objects, the
relative code sizes approaches the relative sizes of the source code. The small size
of the COM objects is also the main reason that the component implementing
the proxy objects is the largest of all the components. In addition, the generated



code is designed to be robust in the sense that all the operations of the proxy ob-
jects verify that the interface pointers have been set before forwarding operation
calls. An obvious trade-off would be to sacrifice this robustness for less overhead
in execution time as well as space. From the file size of the two test programs we
find that the code overhead for setting up the connections between the proxies
and the other objects is a little more than 10 per cent. This overhead, unlike the
overhead on programming effort, cannot be eliminated by automating the setup
task.

Table 1. Size metrics for components

Component Lines of source code File size in KB

Controller1.dll 300 56.5

Controller2.dll 173 53.5

Controller2 Proxy.dll 351 60.5

TestControl1.exe 81 12.5

TestControl2.exe 157 14.0

4 Related Work

The services discussed in this paper have already been adopted by some current
and emerging technologies. As a base for our discussions, we have selected a few
of the most common solutions for these. In addition, this section briefly reviews
some existing research on binary components for real-time systems.

Microsoft´s component model COM [3] originally targets the desktop soft-
ware domain. Thus, it has good support for specifying and maintaining func-
tional aspects of components while disregarding temporal behavior and resource
utilization. Often this can only be overcome with a substantial amount of compo-
nent specific programming. There is no built in support to automatically measure
and record execution times for methods in components. This is typically done by
third party applications that instrument the code in run-time. These applications
are typically not well suited for executing on embedded resource constrained sys-
tems. The desktop version of COM, as well as the DCOM package available for
Windows CE, has some support for synchronizing calls to components that are
not inherently thread safe. This is achieved through the use of so-called apart-
ments, which can be used to ensure that only one thread can execute code in
the apartment at a time. Since this technique origins from the desktop version
of COM, there is no built in support for time determinism and the resource
overhead is larger than desired for many embedded systems.

COM+ [15] is Microsoft’s extension of their own COM model with services
for distributed information systems. These services provide functionality such
as transaction handling and persistent data management, which is common for



applications in this domain and which is often time consuming and error prone
to implement for each component. Builders of COM+ application declare which
services are required for each component and the run-time system provides the
services by intercepting calls between components. COM+ is a major source of
inspiration for our work in two different ways. Firstly, we use the same criteria
for selecting which services our component model should standardize, namely
that they should provide non-trivial functionality that is commonly required in
the application domain. Since our component model targets a different domain
than COM+, the services we have selected are different from those of COM+
as weöö. Secondly, we are inspired by the technique of providing services by in-
terception. This mechanism is also used in other technologies and is sometimes
called interceptors rather than proxies, e.g. in the Common Object Request Bro-
ker Architecture (CORBA) [14] and the MEAD framework for fault-tolerant
real-time CORBA applications [13].

The approach presented in this paper is similar to the concept of aspects
and weaving. In [21], A real-time component model called RTCOM is presented
which have support for weaving of functionality into components as aspects
while maintaining real-time policies, e.g. execution times. However, RTCOM is
a proprietary source code component model. Moreover, functionality is weaved
in at the level of source code in RTCOM whereas in our approach, services are
introduced at the system composition level.

Another aspect-oriented approach is presented in [18], which describes a
method using C# attributes to generate a proxy that handles component repli-
cation for fault tolerance. Our work is primarily targeting COM and C++, which
does not support attributes as used in that paper. An obstacle to the use of C#
for the type of systems we are interested in is the lack of real-time predictabil-
ity in the underlying .NET Framework [16]. The possibility of adding real-time
capabilities to the .NET framework are described in [23].

A model for monitoring of components in order to gain more realistic WCET
estimations is described in [20]. In this model the WCET is guessed at develop-
ment time and the component is then continuously monitored at runtime and
measurements of execution times are accumulated. This technique is very similar
to our execution time measurement service.

Another effort to support binary software components for embedded real-
time systems is the ROBOCUP project [12], which builds on the aforementioned
Koala model and primarily targets the consumer electronics domain. This work
is similar to ours in that the component model defined as part of this project
is largely based on the basic concepts of COM. Furthermore, the sequel of the
project, called Space4U [19], also seems to use a mechanism similar to proxy
objects, e.g. to support fault-tolerance.

5 Conclusion and Future Work

The aim of this work has been to lay the groundwork for component services for
embedded real-time systems using COM as a base technology. A major benefit



of this approach is that industrial programmers can leverage their knowledge
of existing technologies. Also, extending COM with real-time services probably
requires less effort than inventing a new component technology from the ground.

The initial experiences with the prototype shows that it is possible to create
a tool that more or less invisibly add real-time services to a standard compo-
nent model. The example application demonstrates that the use of generated
proxies to implement services may substantially reduce the complexity of soft-
ware components. Another conclusion to be drawn from the example is that our
approach would benefit from also automating the configuration of applications
with proxies.

We have been able to identify some component services which we believe are
useful for embedded real-time systems. As part of our future work, we plan to
evaluate the usefulness of the services as well as to extend the set of services. We
hope to do this with the help of input from organizations developing products in
such domains as industrial automation, telecommunication, and vehicle control
systems.

We realize that the proposed solutions imposes some time and memory over-
head, and we believe that this is an acceptable price for many embedded real-
time systems if using the model reduces the software development effort. It is,
however, necessary that this overhead can be kept within known limits. So far,
our prototype implementation has been tested with the Windows CE emulator,
where we have found no noticeable run-time overheads. In our future work, we
plan to evaluate the solution experimentally on a system running Windows CE.
Measurements will be made to determine the effect on timing predictability as
well as time and memory overhead.

We furthermore aim to empirically evaluate our approach with respect to
its effect on development effort and such quality attributes as reliability and
reusability. Our hypothesis concerning reliability is that it may improve as a
result of reduced complexity of application components, provided off course that
the generated proxies are reliable. We also believe reusability may be affected
positively, as e.g. the use of synchronization services could make it easier to
reuse components across applications that share some functionality but rely on
different synchronization policies. The primary evaluating technique will be to
conduct replicated student projects where software is developed both with and
without the prototype tool. A possible complementary technique is industrial
case studies, which implies a lower level of control and replication but may allow
more realistic development efforts to be investigated.
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