

Architectural Concerns When Selecting an In-House Integration Strategy

– Experiences from Industry

Rikard Land*, Laurens Blankers#, Stig Larsson*, Ivica Crnkovic*
*Mälardalen University, Department of Computer Science and Electronics

PO Box 883, SE-721 23 Västerås, Sweden
{rikard.land, stig.larsson, ivica.crnkovic}@mdh.se

#Eindhoven University of Technology, Department of Mathematics and Computing Science
PO Box 513, 5600 MB Eindhoven, Netherlands

l.blankers@student.tue.nl

1. Introduction
Consider the scenario where two or more software

systems have been developed in-house, for different
purposes. Over time, the systems have been evolved to
contain more functionality, until a point where there is
some overlap in functionality and purpose. The same
situation occurs, only more drastically, as a result of
company acquisitions and mergers. A new system
combining the functionality of the existing systems
would improve the situation both from an economical
and maintenance point of view, and from the point of
view of users, marketing and customers.

To investigate this problem of in-house
integration, we carried out a multiple case study,
consisting of nine integration projects in six
organizations from different domains (here labelled A-
F). For details on methodology, a presentation of the
data sources, and the complete copied out interviews,
see [3]. Elsewhere we have analyzed the case study
data from a process point of view [4], and discussed
the possibilities for reuse in this context [2]; the
present paper investigates issues of importance to an
industrial architect [5] and focuses on how to select a
high-level integration strategy.

2. Selecting a Strategy
The following in-house integration strategies have

been identified:
No Integration (NI) Do nothing – this requires no

extra effort or resources in the short term, but can
consequently not give any return on investment.

Start from Scratch (SFS) Discontinue all
existing systems and initiate the implementation of a
new system. The new system will likely inherit
requirements and architecture from the existing
systems [2].

Choose One (CO) Evaluate the existing systems,
choose the one that is most satisfactory, and

discontinue all others. The chosen system will likely
need to be evolved before it can fully replace the other
systems.

The fourth option is to reuse parts from more than
one existing system and re-assemble them into a new
system, and we present two such types of merge,
distinguished by the time required to implement them:

Instant Merge (IM) The existing components are
rearranged with only minor modifications or develop-
ment of adapters.

Evolutionary Merge (EM) Continue develop-
ment of all existing systems towards a state in which
architecture and most components are identical or
compatible.

Selecting a strategy is naturally influenced by
many factors. A reasonable starting point would be to
early focus on questions and issues that could rule out
some strategies. The two concerns we have found are:

Architectural Compatibility The notion of
architectural mismatch is not new [1]. If the
architectures of the existing systems are not very
similar, Instant Merge can be excluded, and if the
systems are very dissimilar also Evolutionary Merge.
In reality, compatibility is not so easily categorized
and must be assessed in each new situation.
Compatibility issues found in the cases were:
similarity of component roles and high-level structures
[2]; data models (cases F1, F2, F3); similarity of
underlying frameworks, i.e. how components are
defined, for example ‘processes communicating via
files’ (F1), certain hardware topologies (C), and
identical development and deployment environments
(F3). Similar ancestry and standards may imply a
certain amount of compatibility (C, D, F2) [2].

Retireability Retiring a system may be considered
more or less feasible, based on influences such as:
investments made (B, F1, F2) and the satisfaction of
various stakeholders: architects (A, C, E1, F2), users

and customers (B, C, D, F2, F3), management (A, B,
E2, F1, F2, F3). Affection to ‘ones own’ system also
influences the will to retire it. If only some or none of
the systems are considered possible to retire, the
strategies Start from Scratch and Choose One can be
excluded. Retireability is typically re-evaluated given
the resulting set of possible strategies, until an
acceptable balance is found between the estimated cost
of integration and the problems caused by retirement
(A, B, C, E2).

Table 1 summarizes the exclusion of strategies
based on these concerns (black denotes exclusion).
Table 2 shows the results for Architectural
Compatibility and Retireability in the cases, and Table
3 the resulting exclusion of strategies (black
background) and the chosen strategy (circles).

3. Discussion and Future Work
The proposed scheme, with five strategies and two

concerns to exclude strategies, may seem trivial and
self-evident. It seems that some of the cases however
were not aware of this, and unnecessarily spent time
and energy without significant progress (cases C and
F2 in the tables). These concepts should therefore be
useful for the software architect to focus analysis and
discussions.

There are several research directions for the
future. First, the strategies are not so distinct in reality
and could be further refined; for example, although the
overall strategy may be Start From Scratch or Choose
One, some parts may still be reused from several
existing systems. Second, we would like to further
investigate the notion of (in)compatibility: further
studying problems reported from practice would form
a basis for how compatibility can be assessed, and also

suggest specific patterns or mechanisms to overcome
incompatibilities. Third, we would like to see
guidelines on when and how to involve different
stakeholders in order to negotiate retireability and
finally select a strategy.

We would like to thank all interviewees and their
organizations for sharing their experiences and
allowing us to publish them.

4. References
 [1] Garlan D., Allen R., and Ockerbloom J., "Architectural

Mismatch: Why Reuse is so Hard", In IEEE Software,
volume 12, issue 6, pp. 17-26, 1995.

 [2] Land R., Crnkovic I., Larsson S., and Blankers L.,
“Architectural Reuse in Software Systems In-house
Integration and Merge - Experiences from Industry”, In
Proceedings of First International Conference on the
Quality of Software Architectures (QoSA), Springer, 2005.

 [3] Land R., Larsson S., and Crnkovic I., Interviews on
Software Integration, report MRTC report ISSN 1404-3041
ISRN MDH-MRTC-177/2005-1-SE, Mälardalen Real-Time
Research Centre, Mälardalen University, 2005.

 [4] Land R., Larsson S., and Crnkovic I., “Processes Patterns for
Software Systems In-house Integration and Merge -
Experiences from Industry”, In Proceedings of 31st
Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), 2005.

 [5] Sewell M. T. and Sewell L. M., The Software Architect's
Profession - An Introduction, Software Architecture Series,
ISBN 0-13-060796-7, Prentice Hall PTR, 2002.

Table 1: The exclusion of possible strategies

 SFS CO EM IM
Very high
Modest Architectural

Compatibility No

All
Not all Retireability
None

Table 2: Concerns per case
 Retireability Compatibility
A All No
B Not all (One) No
C (initially) None
C (final) Not all (Either) Somewhat

DHMI Not all (One) No
*DServer (?) Somewhat (?)
E1 All Somewhat
E2 Not all (One) Somewhat
F1 (initially)
F1 (final)

No No

F2Pre All No/Somewhat (?)
*F22D All Somewhat
F2Post All No
*F23D None Somewhat
F3 All No/Somewhat (?)

Table 3: Possible and desired strategies, per case
 SFS CO EM IM
A O

B O

C’ O

C’’ O

DHMI O

*DServer (?) (?) O (?)

E1 O

E2 O

F1’ O

F1’’ O

F2Pre O (?)

*F22D O

F2Post O

*F23D O

F3 O (?)

Notes: For cases C and F1, there are two rows each to describe how decisions changed over time. Cases D and F2 has been
divided according to subsystem boundaries. An asterisk indicates that the integration is still at the planning stage.

	1. Introduction
	2. Selecting a Strategy
	3. Discussion and Future Work
	4. References

