
On Validation of Simulation Models in Timing
Analysis of Complex Real-Time Embedded Systems

Yue Lu, Johan Kraft, Thomas Nolte, and Christer Norström
Mälardalen Real-Time Research Centre (MRTC), Västerås, Sweden
{yue.lu, johan.kraft, thomas.nolte, christer.norstrom}@mdh.se

Abstract—In this paper, we present work toward validating
simulation models extracted from complex real-time embedded
systems, from the perspective of response time and execution
time of adhering tasks, by using the non-parametric two-sample
Kolmogorov-Smirnov test. Moreover, we introduce a method of
reducing the number of samples used in the analysis, while
keeping the accuracy of results. The evaluation using a fictive
but representative system model inspired by a real robotic
control system with a set of change scenarios, shows a promising
result: the proposed algorithm has the potential of assessing
whether the extracted simulation model is a sufficiently accurate
approximation of the target system.

I. Introduction

To date, many industrial embedded systems are very large,
flexible, highly configurable software systems, containing mil-
lions of lines of code and consisting of hundreds of tasks,
many with real-time constraints and being triggered in com-
plex, nested patterns. Examples of such systems include the
robotic control systems developed by ABB, as well as several
telecom systems. Further, the temporal dependencies between
tasks in such systems vary the execution time and response
time of tasks radically. We refer to such systems as Complex
Real-Time Embedded Systems (CRTES).

Simulation-based analysis of CRTES has the potential of not
only allowing for response-time analysis of such systems [1],
[2], but also facilitating migration toward a component based
real-time system by e.g. analyzing the timing properties of
the existing code and wrapping it into components. Moreover,
simulation-based methods can also be used in timing impact
analysis [3], i.e. to analyze the impact of changes on a system’s
temporal behavior, before introducing changes to the system.
A major issue when using simulation-based timing analysis is
how to obtain the necessary analysis model, which describes
the original software program focusing on behavior of signif-
icance for task scheduling, communication and allocation of
logical resources. For many systems, manual modeling would
be far too time-consuming and error-prone. Two methods for
automated model extraction are proposed in [4]. A tool for
automated model extraction is in development, named MXTC
- Model eXtraction Tool for C. The MXTC tool targets large
implementations in C, consisting of millions of lines of code,
and is based on program slicing. It is worth noting that the
detailed procedure of model extraction is not in discussion in
this paper. Further, the output of MXTC is simulation models
for the RTSSim simulation framework [5].

However, there is one important issue to be raised, i.e.
model validity, which is defined as the process of determining
whether a simulation model is an accurate representation
of the system, for the particular objectives of the study [6].
As a model is an abstraction of the system, some system
details may be omitted in the model, for instance when
using probabilistic execution time modeling. Thus, the results
from a simulation of such models may not be identical to
the recordings of the system, e.g. with regard to the exact
task response time. In order to convince system experts
to use simulation-based methods, the models should reflect
the system with a satisfactory level of significance, i.e. as
a sufficiently accurate approximation of the actual system.
Moreover, other threats to model validity are the configuration
of the model extraction tool and bugs in the model extraction
and analysis tools. Therefore, an appropriate validation process
has to be performed before using the models.

There are various methods in the field of model validation;
these methods are either objective or subjective. Subjective
methods are often used for validation of simulation models;
examples of subjective methods are Face Validation, Graphical
Comparisons and Sensitive Analysis [7], which are highly
dependent on domain expertise and hence error-prone. In this
paper, we present an objective method using a statistical ap-
proach for validation of temporal simulation models extracted
from such CRTES, by considering this particular problem as
a statistical problem, which can be solved by using existing,
mature methods from the field of statistics. Furthermore, we
examine the idea by using simulation models inspired by a real
industrial robotic control system with three change scenarios
as introduced in Section IV.

II. Model Validation

A. RTSSim Simulation Models

RTSSim simulation framework [5] is used to model and
analyze our target CRTES in this work. It is quite similar
to ARTISST [8] and VirtualTime [9]. An RTSSim simulation
model consists of a set of tasks, sharing a single processor.
Each task in RTSSim is a C program, which executes in
a “sandbox” environment with similar services and runtime
mechanisms as a normal real-time operating system, e.g. task
scheduling, inter-process communication (message queues)
and synchronization (semaphores). The default scheduling
policy of RTSSim is Fixed-Priority Preemptive Scheduling
(FPPS) and each task has scheduling attributes such as priority,

978-1-4244-6850-8/10/$26.00 ©2010 IEEE

period, offset and jitter. RTSSim allows for three types of se-
lections which are directly controlled by simulator input data:
Selection of execution times in execute statements; Selection
of task jitter; Selection of task behaviors, depending on the
system environment, e.g. random number of external events
generated by sensors. In RTSSim, Monte Carlo simulation is
realized by providing randomly generated (conforming to the
uniform distribution) input data. A more thorough description
of RTSSim can be found in [5].

B. Problem Formulation

We are given a simulation model S
′

which is extracted
from a real system (or modeled system) S containing a task
set Γ including n tasks, where n ∈ N. Let RTsamples(S

′
, τi),

RTsamples(S , τi), ETsamples(S
′
, τi) and ETsamples(S , τi) denote

the sampling distributions of the response time and execution
time measured for a task τi in S

′
and S respectively. The goal

of the problem is then to find: whether there are statistically
significant differences between the system and model distri-
butions with respect to response times and execution times of
the adhering tasks, or can they be considered statistically equal
(i.e. from the same population).

C. Descriptive Statistics of Raw RT and ET Data

Table I shows the numerical summary of the center and the
spread (or variability) of sampling distributions of the response
time (RT) data of tasks in Model 1 (M1) containing intricate
execution dependencies, used for the evaluation in Section IV.
In Table I, Std. Dev, Q1 and Q3 represents standard deviation,
first quartile and third quartile of the sampling distribution
respectively. Further, the outliers existing in raw RT data as
well as ET data of all tasks cannot be removed since they
are not generated due to system errors or hardware failures.
Therefore, we have the reasoning to add the five-number
summary introduced in [10] consisting of Min, Q1, Median,
Q3 and Max to Table I. Due to limited space, we only show the
histogram of the sampling distribution of raw RT data of one
task i.e. the CTRL task (with the most complicated temporal
behavior) when the number of samples is large enough i.e.
199 990 in one simulation run (refer to row Samples for the
CTRL task in Table I), as an example shown in Figure 1.
Further, note that the outliers in the picture might not be clear
enough to see, though in fact, they approximately exist in the
range of [4 600, 6 954] along with the horizontal axis.
D. Dependencies between Raw RT and ET Data of Tasks

In our case, due to intricate task execution dependencies
in the system, an upcoming RT data may not be independent
with the RT data previously recorded at each simulation run
(we refer to such RT and ET data as raw RT and ET data).
The same problem applies for raw ET data. Secondly, in the
conventional statistical procedure (parametric test), e.g. t-test,
analysis of variance (ANOVA), one important assumption is
that the underline population is assumed to follow a normal
distribution. However, such assumption cannot be made since
the sampling distribution of either raw RT data or raw ET data

TABLE I
Descriptive statistics of sampling distributions of raw RT data of

tasks in the system model M1 used in the evaluation.

DRIVE IO CTRL PLAN
Samples 199994 400000 199990 199988

Mean 222.08 125.0 1967.3 2002.9
Std. Dev 14.291 45.576 390.09 412.46

Min 220 0 1074 332
Q1 220 100 1594 1631

Median 220 125 1919 1931
Q3 220 150 2339 2376

Max 420 250 6954 45957

Fig. 1. The sampling distribution of raw RT data of the CTRL task
in the evaluation model M1.

of all tasks is often conforming to a multimodal distribution
having several peaks (consider Figure 1 as an example).
Specifically, because of such distinctive feature of our target
industrial control system, it is difficult to bring conventional
statistical methods into the context. A new way of constructing
the sampling distributions of tasks’ RT and ET data has
to be introduced, in order to fulfill the basic requirement
given by probability distribution, i.e. the variable described
by a probability distribution is a random variable, of which
value is a function of the outcome of a statistical experiment
that has outcomes of equal probability. We will present the
proposed mechanism in the following Section III-A.

III. Algorithm

A. Reconstruction of New RT and ET Sampling Distribution

Firstly, in order to eliminate bias on the sampling, which
is a key issue of selecting samples from the population
of all individuals concerning the desired information, the
technique of simple random samples (SRS) [10] is adopted.
SRS gives every possible sample of a given size the same
chance to be chosen. For instance, Monte Carlo simulation
is used as a way of implementing SRS to collect sampling
distributions of RT and ET data of tasks in the extracted
RTSSim model. This is done by an embedded random number
generator rnd inst() in the RTSSim simulator (in lines 3,
5, 7 and 9 in Algorithm 1) which is an improved version
of the Pseudo-random number generator used in C rand().
Moreover, empirical results showed that the distribution of
random numbers given by rnd inst() is conforming to the
uniform distribution, which assures that for each selection in
RTSSim input data, all possible values in any range are equally

Fig. 2. A new reconstructed sampling distribution of RT data of the
CTRL task in the evaluation model M1, by using maximum of each
simulation run.

likely to be chosen. Analogously, the sampling distributions of
RT and ET data of tasks in the real system can be collected
based on measurements given a randomized system input.
Some of the outliers (extreme values) which are caused, e.g.
hardware failure or system errors, have to be removed from
the sampling distributions.

Secondly, we propose a method by firstly running N Monte
Carlo simulations conforming to SRS as introduced previously,
with the purpose of eliminating the dependencies between
raw RT and ET data of tasks due to intricate task temporal
dependencies. Specifically, for each task in the task set Γ, the
maxima of m samples RT data and m samples ET data recorded
by each simulation, will be chosen to construct new sampling
distributions of RT data and ET data. By doing this, the new
reconstructed sampling distributions of RT and ET data of
tasks can be considered from a random variable, since there
are no dependencies between any maximum of RT and ET
data of tasks between two independent simulations. Refer to
Figure 2 as an example.

Nonetheless, as shown in Figure 2 clearly, the new re-
constructed sampling distribution is positive skewed (i.e. the
right tail is longer), in which the assumption required by the
conventional statistical analyses i.e. normality of distributions
cannot be satisfied. Hence, a parametric test cannot be rea-
sonably applied in this work, we thereby consider using the
two sample Kolmogorov-Smirnov (hereafter KS test) which
is a non-parametric statistics making no assumptions on the
underline population of a sampling distribution.

B. StatiVal

The proposed method, StatiVal, is shown in Algorithm 1.
The algorithm returns the result concerning if there exists a
statistically significant difference between the modeled system
S and the simulation model S

′
, in the view of system timing

properties such as tasks’ response time and execution time.
Further, in this work, since we cannot perform the validation
between the real modeled system and the extracted model,
we will instead compare a system model S inspired by a real
industrial robotic control system (considered as the modeled
system) with a set of variations S

′
where a specific change

scenario (as shown in Table IV) is applied to S . Both of S
and S

′
, are in this case simulation models, analyzed using

Monte Carlo simulation which in Algorithm 1 is modeled as

a function, MTC, with four parameters: m - the number of
samples drawn from each simulation trace, τk - the task on
focus in KS test, Property - either RT or ET of the task τk and
rnd inst() - a random number generator in RTSSim simulator.
The outline of StatiVal is as follows:

1) Construct the sampling distribution of N RT and ET data
of all the tasks in both the system S and the model S

′

by Monte Carlo simulation MTC() respectively (refer to
lines 1 to 16 in Algorithm 1).

2) Use KS test to compare if sampling distributions of
RT and ET data of each task τk in the task set Γ in
both S and S

′
are statistically significant iteratively. If

any of such results is H0, then Algorithm 1 draws the
conclusion H0, i.e., the model S

′
is not a sufficiently ac-

curate approximation of the system S due to an improper
model extraction process, and finally, stops the validation
process; Otherwise, the entire validation process will
terminate after all the tasks are evaluated by KS test
(refer to lines 18 to 33 in Algorithm 1). Note that the
hypotheses used in this work are opposite to the ones
in the traditional hypothesis test, the reasoning can be
found in [11]. In practice, KS test is conducted by using
a commercial software XLSTAT, which is a plug-in to
EXCEL.

Algorithm 1 S tatiVal(Γ)
1: for all τk such that 1 ≤ k ≤ n in Γ in both S and S

′ do
2: for all i such that 1 ≤ i ≤ N do
3: Xi ← xi,1, ..., xi, j, ..., xi,m ← MTC(m, τk ,RT, rnd inst())
4: Xτk ,i ← Max(Xi)
5: Yi ← yi,1, ..., yi, j, ..., yi,m ← MTC(m, τk , ET, rnd inst())
6: Yτk ,i ← Max(Yi)
7: X

′
i ← x

′
i,1, ..., x

′
i, j, ..., x

′
i,m ← MTC(m, τk ,RT, rnd inst())

8: X
′
τk ,i
← Max(X

′
i)

9: Y
′
i ← y

′
i,1, ..., y

′
i, j, ..., y

′
i,m ← MTC(m, τk , ET, rnd inst())

10: Y
′
τk ,i
← Max(Y

′
i)

11: end for
12: Xτk ← Xτk ,1, ..., Xτk ,i, ..., Xτk ,N
13: Yτk ← Yτk ,1, ..., Yτk ,i, ..., Yτk ,N

14: X
′
τk
← X

′
τk ,1

, ..., X
′
τk ,i
, ..., X

′
τk ,N

15: Y
′
τk
← Y

′
τk ,1

, ..., Y
′
τk ,i
, ..., Y

′
τk ,N

16: end for
17: ret ← 0
18: for all τk such that 1 ≤ k ≤ n in Γ in both S and S

′ do
19: ret ← kstest(Xτk , Xτ′k

, α)

20: if ret = Ha then
21: ret ← Ha
22: else
23: ret ← H0
24: return ret
25: end if
26: ret ← kstest(Yτk ,Yτ′k

, α)

27: if ret = Ha then
28: ret ← Ha
29: else
30: ret ← H0
31: return ret
32: end if
33: end for
34: return ret

C. A Method of Reducing Sample Size N

In [12], the rational way to choose a sample size is
introduced by weighing the benefits in information against
the cost of increasing the sample size. In our context, the

benefit is to obtain the correct validation results given by the
proposed method, and the cost is the number of simulations
N in the analysis. We will illustrate the idea by referring
to a concrete example shown in Table II using Case 3 in
Table IV. According to our reasoning, when N is equal to
20 000, StatiVal can give the correct result H0 as shown at Step
1 in Table II. In Column Accuracy in Table II,

√
represents

the result given by StatiVal is correct when N is equal to the
certain value, while × denotes the opposite situation. Further,
we decrease the number of N by four times, according to the
important rule of thumb: To cut the error in half, the sample
size must be quadruple. Therefore, at Step 2, N is set to 5 000

(i.e. d20 000
4
e). The results given by StatiVal are not wrong

until when N is equal to 79 at Step 5. Consequently, the
value of N can be safely reduced to 313 at Step 4, meanwhile
keeping the accuracy. It is worth noting that the value of N
could be further optimized by using for instance a lower-part
binary search algorithm.

TABLE II
Illustration of reducing the number of samples required by the

proposed algorithm.

Step N Accuracy Step N Accuracy
1 20000

√
4 313

√
2 5000

√
5 79 ×

3 1250
√

6 20 ×

IV. Evaluation

In this work, we examine the idea by using a simulation
model Model 1 (M1) describing a fictive, representative indus-
trial robotic control system developed by ABB. It is designed
to include some behavioral mechanisms from the ABB system:
1) Tasks with intricate dependencies in temporal behavior due
to Inter-Process Communication (IPC) and globally shared
state variables; 2) The use of buffered message queues for
IPC, which vary the execution time of tasks dramatically;
3) Although FPPS is used as base, one task, i.e. the CTRL
task, changes its priority during runtime, in response to system
events. Further, the task model is presented in Table III, where
time unit is one simulation time unit (tu). The details of the
model are described in [5].

TABLE III
Tasks and task parameters for M1. The lower numbered priority is

more significant, i.e. 0 stands for the highest priority.

Task Period (tu) Offset (tu) Priority

DRIVE 2000 12000 2
IO 5000 500 5

CTRL 10000 or 20000 0 6 or 4
PLAN 40000 0 8

The RT and ET data of tasks produced by the original
simulation model M1 is used as reference, for comparing
the impact of a set of change scenarios outlined in Column
Changes Description in Table IV. Moreover, for Case 3, there
is a DUMMY task added to the model S

′
with the certain

priority, execution time and period (denoted as C and T in

Table IV). Finally, we compare the outputs against the original
model to investigate the performance of the method. Further,
the number of samples used in StatiVal is obtained after
optimization, i.e. 313 samples for both RT and ET sampling
distributions. The results given by StatiVal and the expected
results (ER) are shown in Table IV. More importantly, our
evaluation shows a promising result, i.e. the proposed al-
gorithm can correctly identify temporal differences between
different evaluation models, hence it has the potential of being
used a model validation technique by showing the evidence
whether the extracted simulation model is a sufficiently accu-
rate approximation of the target system.

TABLE IV
Results obtained by using StatiVal concerning different models

according to change scenarios.

Change
Scenarios

Changes Description RT ET StatiVal ER

Case 1 IO: C 23→ 46 H0 H0 H0 H0

Case 2 PLAN: Prio 8→ 9 Ha Ha Ha Ha

Case 3 DUMMY: Prio = 7, T =

5 000, C = 25
H0 Ha Ha H0

V. Future Work

This paper has presented our ongoing work on validation of
temporal simulation models extracted from complex real-time
embedded systems. In particular, our evaluation showed that
the proposed method has the potential to identify temporal
differences between the modeled system and the extracted
simulation models. As part of future work, an effort will be
spent on evaluating more scenario changes on the evaluation
model. Moreover, we will evaluate the method on real systems.

References

[1] J. Kraft, Y. Lu, C. Norström, and A. Wall, “A metaheuristic approach for
best effort timing analysis targeting complex legacy real-time systems,”
in RTAS 08, April 2008, pp. 258–269.

[2] M. Bohlin, Y. Lu, J. Kraft, P. Kreuger, and T. Nolte, “Simulation-based
timing analysis of complex real-time systems,” in RTCSA 09, August
2009, pp. 321–328.

[3] J. Andersson, J. Huselius, C. Norström, and A. Wall, “Extracting
simulation models from complex embedded real-time systems,” in Procs.
of the Int. Conf. ICSEA’06. IEEE, 2006.

[4] J. Kraft, J. Huselius, A. Wall, and C. Norström, “Extracting simulation
models from complex embedded real-time systems,” in Real-Time in
Sweden 2007, August 2007.

[5] J. Kraft, “RTSSim - A Simulation Framework for Complex Embedded
Systems,” Mälardalen University, Technical Report, March 2009.

[6] A. M. Law, “How to build valid and credible simulation models,” in
WSC ’08. Winter Simulation Conference, 2008, pp. 39–47.

[7] O. Balci, “How to assess the acceptability and credibility of simulation
results,” in WSC ’89. New York, NY, USA: ACM, 1989, pp. 62–71.

[8] D. Decotigny and I. Puaut, “ARTISST: an extensible and modular
simulation tool for real-time systems,” in Proc. of the 5th IEEE Interna-
tional Symposium on Object-Oriented Real-Time Distributed Computing
(ISORC ’02), 2002, pp. 365–372.

[9] “Rapita systems, www.rapitasystems.com, 2008.”
[10] D. S. Moore, G. P. Mccabe, and B. A. Craig, Introduction to the practice

of statistics, 6th ed. New York, NY 10010: W. H. Freeman and
Company, 2009.

[11] A. Robinson and R. Froese, “Model validation using equivalence tests,”
Elsevier, ScienceDirect 2004, vol. 176, pp. 349–358, 2004.

[12] R. Schlaifer, Applied statistical decision theory. Wiley-Interscience,
1961.

