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Abstract

Machines are not perfect; they sometimes fail to operate as intended.
Such failures can be more or less severe depending on the kind of machine
and the circumstances of the failure. E.g. the failure of an industrial
robot can cause the hold-up of an entire assembly line costing the af-
fected company large amounts of money each minute on hold. This kind
of situation can be prevented by equipping machines with automatic
condition-monitoring systems that continuously monitor their condition
and instantly report the detection of a failure or an incipient failure.
The nature of machine-monitoring and diagnosis lends itself naturally
to Case-Based Reasoning. Case-Based Reasoning is a method in the
discipline of Artificial Intelligence based on the idea of assembling expe-
rience from problems and their solutions as ”cases” for reuse in solving
future problems. Cases are stored in a case library, available for retrieval
and reuse at any time. By collecting such sensor data as sound and vi-
brations from a machine and representing this data as the problem part
of a case and consequently representing the measured corrective action
as the solution to this problem, a complete series of the events of a ma-
chine failure and its correction can be stored in a case for future use.
This thesis describes an innovative approach to this concept by using a
combination of Case-Based Reasoning and wavelet analysis as a means
of condition-monitoring and diagnosis of primarily industrial machines.
For evaluation purposes this novel approach is implemented as a pro-
totype system for the diagnosis of the status of gearboxes in industrial
robots.
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Chapter 1

Introduction

It is of great value to a production company in the growing global mar-
ket of today to be able to automatically detect or predict a failure in its
machines, either those in its production lines or those which it produces
and offers to its customers. In either case, the failure of the machine
might cost thousands of dollars in delayed or lost production or in dam-
age to the company’s reputation among buyers. To prevent this kind of
breakdown, condition-monitoring systems can be used to aid the engi-
neer in performing a diagnosis of the machine and in its repair.

A condition-monitoring system is able to assess the condition of a ma-
chine and report if any deviation from the standard mode of operation
of the machine occurs or is likely to occur. Deviations can be increasing
vibrations, rising temperatures, abnormal noise etc. Even though the
benefits of this kind of systems are well known, they are still not widely
accepted within industry. One basic reason for this might be the fear of
investing much in the implementation of such a system without knowing
exactly what the results will be [1]. E.g. it is well known that sensor
faults can cause unwarranted stops in production but recent advances
in research in the area of Artificial Intelligence (AI) have increased the
reliability of this type of system. This thesis describes a novel approach
that combines Case-Based Reasoning (CBR) and wavelet analysis in a
decision-support system used for fault diagnosis of machines. For eval-
uation purposes, a prototype has been implemented and tested on gear-
boxes in industrial robots. The system can be used as a decision-support
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4 Introduction

tool by engineers and it has been evaluated in an actual industrial set-
ting at ABB Robotics in Väster̊as, Sweden.

CBR is a promising method for use in implementing a decision sup-
port system for fault diagnosis of machines. CBR uses a database con-
taining problems experienced previously and the solutions to these, to
solve new problems of a similar nature. [2]. The solutions can be col-
lected from human experts or they can reflect previous search results in
the case library. An example of an area in which CBR has been used is
in medicine [3] where the symptom (the problem) and its diagnosis and
treatment (the solution) are used as a case. The diagnostics of technical
equipment such as industrial robots and the medical diagnosis of humans
are analogous. When a robot fails to operate as intended it often shows
unusual symptoms e.g. abnormal noises or shifting trends in driving
current etc.

1.1 Outline of thesis

This licentiate thesis is organized as follows. Chapter 2 provides a back-
ground to the most important methods and techniques used in develop-
ing this thesis. Chapter 3 considers the area of case-based fault diagnosis
of machines. It presents a short background, related work, motivation
and contributions to this domain of applications. Chapter 4 summarizes
the papers which form part of the thesis. The first part of the thesis
is concluded in Chapter 5 and future work is suggested. The following
three chapters contain complete versions of the included papers.



Chapter 2

Background

This chapter presents a short theoretical background to the work this
thesis is based on. Section 2.1 gives a short introduction to the Case-
Based Reasoning methodology and section 2.2 presents some theoretical
explanations of the phenomena of gear noise.

2.1 Case-Based Reasoning

2.1.1 History of CBR

CBR is derived from instance-based learning which is a machine learn-
ing method [4]used in the artificial intelligence discipline. The technique
of CBR had its theoretical origins in the mid 1970s and originally came
from research in cognitive science [5]. It a feasible model of the reasoning
process performed by our brain e.g. when we are subjected to stereo-
typical situations such as going to a restaurant or visiting a hairdresser.
If a similar situation is encountered a second time, memories of these
situations are already recorded in our brains and stored as scripts that
inform us what to expect and how to behave. The original work in CBR
was performed by Schank and Abelson in 1977. In 1983 Janet Kolod-
ner developed the first CBR system designated CYRUS [6]. Cyrus was
an implementation of Schank’s dynamic memory model and contained
knowledge, as cases, about the travels and meetings of a former U.S.
Secretary of state. CBR has been known outside the research commu-
nity since about 1990 when Lockheed began to use a CBR system named
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6 Background

CLAVIER [7] for the baking of composite parts in an industrial oven.

2.1.2 The Structure of Case-Based Reasoners

The designs of most CBR systems share some common features. The
basic parts of the system are the case and the case library. The structure
of cases can be very different, depending on the systems in which they
are used but in general they all share some common parts:

• A problem description, generally a set of features.

• A solution to the problem

The features are used to match the case against other cases. They
can be generic text, symbols, numerical values etc. The problem descrip-
tion is the reason for the existence of the case. It describes the problem
to be solved. The solution describes how the problem has been solved
when encountered in the past. The solution may be altered and adapted
if the problem differs in any way from that described in the case. Cases
are stored in a case library, commonly stored in a database with routines
for storing, retrieving and manipulating cases.

A Case-Based Reasoner operates with the case library as the central
part of the system. When a new problem occurs the case-based reasoner:

1. Retrieves the appropriate case from the case library.

2. Reuses the retrieved case in the current situation.

3. Revises the retrieved case if needed.

4. Retains the revised case in the case library.

This cycle enables the Case-Based Reasoner to improve it’s ability to
solve problems over time as more and more cases are stored in the case
library.

A new problem is matched against cases previously stored in the case
library and those most similar are retrieved from the library. A solution
is suggested based on the retrieved case(s) that represents the closest
match to the new case. If the proposed solution is inappropriate it will
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probably need to be revised, resulting in a new case that can be retained
in the case library. Figure 2.1 depicts the CBR cyclical process applied
to the classification and diagnosis of sensor data.

Diagnose

-----------

-----------

-----------

Case Library

Revised

diagnose

-------------

-------------

Sensordata

Retrieve

Technician

Reuse
Revise

Retain

Figure 2.1: The CBR process.

2.1.3 Case Retrieval

To retrieve cases similar to a new problem the system needs a match-
ing function able do identify such similar cases. Most often, cases are
retrieved by some kind of similarity measurement. The similarity mea-
surement is based on certain selected characteristics and enables the
quick retrieval of appropriate cases from the case library. E.g. in a
machine diagnosis system, these features might be the type of machine,
specifications of the machine, various extracted sensor data from the
machine etc.

The similarity measurement calculation usually results in the re-
trieval of cases not identical with the new case but separated by a cer-
tain ”distance”. A common technique used when calculating the dis-
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tance measurement is the nearest neighbor retrieval. The formula for
the nearest neighbor distance calculation is shown in 2.1.

Similarity(N, R) =
n∑

i=1

wi × f(Ni, Ri) (2.1)

where

N is the new case
R is the retrieved case
n is the number of features in each case
i is an individual feature from 1 to n
f is a similarity function for attribute i in cases N and R
w is a weight that controls the importance of attribute i

As shown in 2.1 weights can be used in the retrieval process to discern
features that are more or less important in the retrieval process. By
weighting certain attributes, the nearest neighbor calculation can be
made more realistic.

2.1.4 Adaptation

When a case is retrieved, the CBR system will try to reuse the solution
it contains. In many circumstances this solution may be appropriate.
But if the proposed solution is inadequate, the CBR system might try
to adapt the proposed solution. Adaptation means that the system tries
to transform the proposed solution (if close enough) to a more appropri-
ate solution suited for the new case. In general there are two kinds of
adaptation procedure in CBR:

• Structural adaptation

• Derivational adaptation

Structural adaptation begins with the original solution and adapts
this by the application of adaptation rules and formulas. Derivational
adaptation derives a new solution from the rules or formulas that created
the original solution. In this method, the rules that created the original
solution must be saved in the case.
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Today, most CBR systems do not use adaptation. They simply reuse
the solution suggested by the closest matching case. If any adaptation
is needed, this is performed manually

2.2 Gear Noise

Operating gears generate noise by the meshing of gear teeth. The noise
is transmitted to the shafting, bearings and transmission housing. The
transmission housing then acts as a loudspeaker and radiates the noise
to the surrounding environment. The noise is in most cases caused by
a imperfect engagement of the gear teeth. This imperfect action results
in non-constant angular velocities caused by the dynamic forces at the
gear teeth which in turn excite vibrations in the gear blanks and shaft-
ing. The gear housing walls normally prevent noise from the gear blanks
reaching the human ear. The most significant transmission path of the
noise is through the transmission housing.

Figure 2.2 depicts the first part of a drive train of an axis in an in-
dustrial robot. It consists of a driving and a driven shaft.

Z1 

Z2 

Figure 2.2: A part of a simple drive train.

The gear ratio i of Figure 2.2 can be calculated as:

i =
Z2

Z1
(2.2)
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where

Z1 =number of teeth of the driving gear (pinion)
Z2 =number of teeth of the driven gear

The primary shaft rotational frequencies can be calculated using the
following formulas [8, 9]:

fs1 =
N1

60
(2.3)

fs2 =
N2

60
= fs1

Z1

Z2
(2.4)

fm = fs1Z1 (2.5)

where

fs1 = driving shaft frequency, Hz
fs2 = driven shaft frequency, Hz
fm1 = gear mesh frequency, Hz
N1 = driving shaft speed, rpm
N2 = driven shaft speed, rpm

The shaft and meshing frequencies can also be seen in the bands and
sidebands of a Fast Fourier Transform spectrum (see Figure 2.3). The
sidebands can be calculated from the gear mesh and shaft frequencies
with the following formula:

fsb = fm ± nfs1, fm ± nfs2 (2.6)

Figure 2.3 depicts a Fast Fourier Transform (FFT) [10] of a sound
recording of the gear train of which the gear wheels described above form
a part. From this FFT, it is possible to obtain information about the
gearbox status by analyzing the noise peaks in the frequency spectrum.

The noise peak at around 600 Hz corresponds to the meshing fre-
quency of the driving gear. This frequency can be calculated using for-
mula 2.5 by inserting the rotational frequency of the driving shaft which
was 43 Hz and the number of teeth on Z1 which was 14:
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Figure 2.3: An FFT noise spectrum from an industrial robot.

fm = fs1Z1 = 43 ∗ 14 = 602Hz

As depicted in 2.3, the shaft frequencies can often be read from the
sidebands; fs1 corresponds to the driving shaft rotational frequency and
fs2 corresponds to the driven shaft rotational frequency. Harmonics
occur at integer multiples of the fundamental frequencies. The first
harmonic can be seen at the right in the figure at 1200 Hz. The same
sidebands occur in the harmonic(s).

2.2.1 Transmission Error

In most cases, the dominant source of noise is vibration due to transmis-
sion error (geometric inaccuracies) introduced during the manufacture
of the gear. Transmission error is defined as [8]

”the difference between the actual position of the output gear and
the position it would occupy if the gears were perfectly conjugate”

2.2.2 Gear Tooth Impacts

Gear tooth impacts occur when there are tooth deflections or spacing
errors in a gear. This will result in a premature contact at the tooth
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tip causing an impact between the gears. These impacts can cause large
frequency noise levels and also shorten the life of a gear due to reductions
in gear tooth fatigue life.

A
m

pl
itu

de

A
m

pl
itu

de

Time (s) Time (s)
0             1              2             3 0            1              2             3

Figure 2.4: A normal and a faulty recording from an industrial robot.

Figure 2.4 shows two recordings of the axes of an industrial robot; a
recording of a normal axis at the left and a recording with an abnormal-
ity at the right. As can be seen in the figure, the normal recording is
smooth and steady, containing no prominent peaks. The faulty recording
at the right resembles the normal recording except for two very promi-
nent peaks. These peaks are the results of impact noises due to a notch
in one of the gear wheels in the gearbox. In paper A, these peaks were
extracted as features and classified in a case-based approach. Impulse
noises are not always detectable in an FFT spectrum [11]. Under these
circumstances wavelet analysis might be more successful.

By measuring the time t between two repeating noise impulses the
shaft speed can be obtained (see 2.3 and 2.4) using the formula:

f =
1
t

=
N

60
(2.7)

2.2.3 Gear Play

Excessive play between two mating gears can result in undefined rattling
impulse noises. These noises can occur when an instant torque is applied
to the output shaft of the gearbox or when the driving shaft changes its
direction of rotation. Figure 2.5 depicts a filtered sound recording of a
rattling gearbox of an industrial robot.
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Figure 2.5: Filtered noise with play fault.

It can be difficult to determine which part of the gearbox causes such
rattle. It is not always straightforward and in this case, the experience
of experts is very valuable.

2.2.4 Friction

Increased friction between two mating gears is a potential source of in-
creased vibration. The meshing action between two gears is character-
ized by a combination of rolling and sliding. The sliding forces between
two gear teeth as they mesh will increase with increased friction resulting
in increasing gear noise.

2.3 Diagnostic Methods

2.3.1 Time Domain Averaging

In transmissions with multiple reductions, time domain averaging pro-
vides a means of isolating each gear in the transmission line. This method
requires an external synchronization pulse from the input shaft. The
pulse is connected to the data sampling unit. Each gear tooth meshing
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noise can be calculated with reference to the rotation of the input shaft
and the gearbox ratio.

2.3.2 Frequency Bandwidth Analysis

The noise signal from a gearbox must be processed before any important
information related to the gear wheels can be extracted from it. A
common way to achieve this is to calculate an FFT. FFT produces a
noise spectrum of the calculated signal in which it is possible to identify
gear meshing and shaft rotation components (see figure 2.3). Another
method of frequency analysis is wavelet analysis. Wavelet analysis [10] is
an effective tool for transforming analogue sensor signals to a frequency
spectra. It has been shown to be more effective than FFT under heavy
background noise conditions. [12].

2.4 Recapitulation

One of the main ideas behind this thesis is to introduce various sensor
signals e.g. the above described recording of noise from faulty gearboxes
into the Case-Based Reasoning cycle described in section 2.1. In chapter
3, a framework for this is presented and in paper A, a prototype system
inspired by this framework is tested using these sound recordings.



Chapter 3

Case-Based Fault
Diagnosis of Machines

In this chapter the application of case-based fault diagnosis of machines
in industry is described with respect to background, motivation, related
work and contribution.

3.1 Background

Manual diagnosis of machines has been performed as long as machines
have existed. Automatic diagnosis of machines began to appear first
when suitable computers became available in the 1970’s. Computer-
aided diagnosis of machines has many advantages and can be an effective
cost-saving investment for companies [1].

Most machinery failures give a warning in advance before they oc-
cur. This warning is usually a physical condition which indicates that a
failure is about to occur [9].

Table 3.1 lists some common machine monitoring parameters and
their associated sensors.

A typical diagnosis system consists of some of the sensors listed in
table 3.1 which output are fed to an analysis system. Figure 3.1 depicts

15



16 Case-Based Fault Diagnosis of Machines

Table 3.1: Monitoring Parameters
Parameter Sensor
Temperature Temperature detector
Vibration Accelerometer
Sound Microphone
Electrical current Ammeter, voltmeter

a schematic figure of a selection of some of the OSA-CBM [13] standard
modules that form a typical analysis and fault monitoring system [14].

Symptom

Sensor

Decision 
Support

Condition 
Monitor

Signal 
Processor

Action taken

Figure 3.1: Four of the OSA-CBM standard modules for machine mon-
itoring.

The modules in figure 3.1 (from left to right) are:

• Sensor Module: The sensor module provides the system with mon-
itoring data (see table 3.1)

• Signal Processing Module: The Signal Processing Module receives
sensor data and processes the data with e.g digital filters such as
FFT, wavelet transform etc.

• Condition Monitor Module: The primary purpose of the Condition
Monitor is to generate alerts based on preset operational limits

• Decision Support Module: The primary purpose of the decision
support module is to generate recommended actions with respect
to the condition of the system
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When implementing such a system, computers are used in almost all
of the above described modules. Computers are used for signal process-
ing, condition monitoring, decision support and presentation of collected
sensor data. In paper A a prototype system based on some of the mod-
ules in Figure 3.1 is implemented and tested on a gearbox of an industrial
robot. This system uses CBR for decision support.

3.2 Motivation

CBR is an attractive AI method for building machine diagnosis systems.
The methodology of CBR lends itself naturally to the fault diagnosis of
machines by representing the sensor data as the problem and the repair
action as the solution. CBR uses an existing database with known prob-
lems and their solutions to solve new problems that are similar to the
known problems [2]. The solutions can be collected from human experts
or they can reflect previous search results in the case library. The CBR
system stores the information gained which can be retrieved at any time
for future use.

We have concentrated our research on a machine diagnosis system
used in the end-test of industrial robots. Mechanical faults in industrial
robots often show their presence through abnormal acoustic signals com-
ing from the gearboxes. Correct diagnosis of the robot sound may be a
very critical part of the end-test. An incorrect diagnosis of the sound
can result in the delivery of a faulty robot to the customer. Manual
diagnosis based on sound requires extensive experience and usually such
experience takes a long time to acquire. The experience acquired is also
difficult to preserve and transfer and is often lost if the personnel con-
cerned leave the task of testing. CBR is very suitable for this kind of
industrial application. Implementing this technique in industrial appli-
cations preserves experience that would often be lost if skilled personnel
leave their employment.

3.3 Related Work

Case-based maintenance and diagnosis systems began to evolve after
1994. Case-based diagnosis systems are installed most frequently in
helpdesks, one example being Case Advisor [15], the first commercial
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helpdesk application that utilized CBR. Case-based systems for machine
diagnosis remain a new area, most systems existing today being proto-
types on a research level. CheckMate [16] is one example of a case-based
diagnosis system implemented for use in an industrial environment. It
was implemented in order to aid technicians in repairing industrial print-
ers. A survey that includes some other case-based diagnostic systems for
machines is given in paper B.

3.4 Contribution

The contributions of this thesis are:

• A method that allows the reuse of experience in machine diagno-
sis by assembling the symptom, diagnosis, corrective action and
follow-up of a machine failure as a case

• A method for classifying cases in sparsely populated case libraries

• A novel combination of Case-Based Reasoning and wavelet analysis
for fault diagnosis



Chapter 4

Paper Contributions

This thesis includes three papers inserted in chronological order. All pa-
pers were written within the frames of the EXACT project [17] initiated
in 2003. The first paper, Fault Diagnosis in Industry using Sensor Read-
ings and Case-Based Reasoning is largely based on my master’s thesis.
The paper contains additional research results and is largely rewritten
to follow the style of a journal publication. It was published in the Intel-
ligent & Fuzzy Systems Journal, volume 15, number 1, 2004. Paper B,
A Survey of Case-Based Diagnostic Systems for Machines was originally
a paper written in a science theory course. It was later submitted and
accepted at the Seventh International Conference on Enterprise and In-
formation Systems (ICEIS 2005), held in Miami, Florida. The last paper
in this thesis (paper C), Dynamic Modeling and Sound (Noise) Diagnos-
tics of Robot Gearboxes for Fault Assessments, has (at the time of writing
this) been accepted for presentation at the Scandinavian Conference on
Simulation and Modeling (SIMS 2005) to be held in Trondheim, Norway.

4.1 Paper A

Paper A presents an innovative approach to the fault diagnosis of indus-
trial robots by using sensor signals (sound recordings) combined with
CBR. The end-testing of industrial robots plays a very important part
in the assembly line of the robot factory at ABB Robotics in Väster̊as,
Sweden. As a part of this end-test the robots are set up and an auto-
matic run-in program is executed. The robot is driven back and forward
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in all its degrees of freedom during this run-in cycle. The run-in cy-
cle is primarily used for the run-in of the robot gearboxes but it also
functions as a check to ensure that the robot is fully operational and
without defects in its gearboxes, electric motors, cables etc. This paper
represents an approach to the automatic detection of any problems dur-
ing this cycle by means of sound recording and CBR; sound from the
gearboxes is recorded during the run-in cycle. A system that inputs this
sound, extracts features from it and uses CBR as a means of making a
diagnosis on the basis of the sound recording is outlined. Such a system
has many advantages as compared with a manual analysis performed by
the testing personnel. It not only performs a diagnosis of the gearbox
but also enables the storage for reuse of experience gained in machine
diagnosis by connecting the symptom, diagnosis, corrective action and
follow-up of the machine by packaging as a case.

Erik Olsson is the main author of the paper and Peter Funk con-
tributed with valuable ideas and comments. Ning Xoing added to the
paper with expert knowledge in Fuzzy systems and sensor fusion.

4.2 Paper B

Paper B is a survey of certain systems that use CBR for fault diagnosis
of machines. With only five systems considered, it is not a broad survey
but it attempts to focus on ”pure” CBR systems with a well documented
CBR-part. All systems but one are documented in the ECCBR and IC-
CBR proceedings. The systems are compared to each other with respect
to their CBR-implementations such as case storage, case representation,
case retrieval and adaptation of retrieved solutions. It is concluded in
the paper that case-based fault diagnosis systems for machines are still
quite unusual on the public market and most existing systems are still on
a research level but also that CBR and its application to fault diagnosis
of machines is a promising area for future research.

Erik Olsson is the single author of this paper.
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4.3 Paper C

This paper builds upon previous work on the classification of sound
recordings from industrial robots. The paper presents a model of a gear-
box of an industrial robot. The model was made with the Modelica
mechanical library using Dymola graphical tools. The model was used
for simulation of the gearbox and was run under different load conditions
in order to detect correlations between vibrations on the force level ex-
tracted from the model during simulation and previously obtained sound
recordings from real gearboxes. These vibrations were projected onto the
sound recordings with a statistical vibration diagnostic parameter known
as the Crest Factor.

Erik Olsson and Rostyslav Stolyarchuk contributed equally to this
paper. Rostyslav, from the State Scientific and Research Institute of
Information Infrastructure, Lviv, Ukraine worked as a guest researcher
at Mälardalen University during the time this paper was written. The
authors are listed in alphabetical order.





Chapter 5

Conclusions and Future
Work

5.1 Conclusions

This thesis presents a CBR approach towards the condition monitoring
and diagnosis of machines. This is achieved with the aid of various sen-
sor readings and a relevant feature identification and extraction process
based on those sensor signals. The approach enables the collection of
valuable sensor data from machines on a regular basis for use for condi-
tion monitoring and for storage for future use. As previously mentioned,
the main contributions of this thesis are:

• A method that enables the reuse of experience in machine diag-
nosis by assembling the symptom, diagnosis, corrective action and
follow-up of a machine failure as a case

• A method for classifying cases in sparsely populated case libraries

• A novel combination of Case-Based Reasoning and wavelet analysis
for fault diagnosis

5.2 Future work

Future work proposed includes:

23
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The adoption of further sensor signals for use in the classification
process and the extraction of relevant features from these. Those to be
considered include time- and frequency-based features extracted from
e.g. sound data, current data, vibration data etc.

The development of an automatic weighting system. Instead of man-
ual weighting, an automatic weighting algorithm can be adopted that
automatically adjusts the weights as required, e.g. [18] presents an ap-
proach to automatic weighting.

Continued work on an automatic diagnosis system for machines that
implements and tests important results from this research such as rel-
evant feature extraction, automatic weighting, fast and correct case re-
trieval etc.
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Abstract

Fault diagnosis of industrial equipments becomes increasingly impor-
tant for improving the quality of manufacturing and reducing the cost
for product testing. Developing a fast and reliable diagnosis system
presents a challenge issue in many complex industrial scenarios. The
major difficulties therein arise from contaminated sensor readings caused
by heavy background noise as well as the unavailability of experienced
technicians for support. In this paper we propose a novel method for di-
agnosis of faults by means of case-based reasoning and signal processing.
The received sensor signals are processed by wavelet analysis to filter out
noise and at the same time to extract a group of related features that
constitutes a reduced representation of the original signal. The derived
feature vector is then forwarded to a classification component that uses
case-based reasoning to recommend a fault class for the probe case. This
recommendation is based on previously classified cases in a case library.
Case-based diagnosis has attractive properties in that it enables reuse
of past experiences whereas imposes no demand on the size of the case
base. The proposed approach has been applied to fault diagnosis of in-
dustrial robots at ABB Robotics and the results of experiments are very
promising.

Key Words: case-based reasoning, fault diagnosis, feature extraction,
signal filtering, wavelet analysis
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6.1 Introduction

A fault is an abnormal state of a machine or a system such as dysfunc-
tion or malfunction of a part, an assembly, or the whole system. As
machines become larger and more complex with industrial development,
the costs and technical know-how required for system maintenance in-
creases substantially. Fast and precise identification of faults and prob-
lems in equipments makes a crucial contribution to the enhancement of
reliability in manufacturing and efficiency in product testing.

For monitoring purpose, streams of data are gathered by various
sensors on-board equipments. Such sensor recordings can be regarded
as evidence of origin for recognizing the working conditions of a machine
(e.g. normal operation, loose rear wheel, damaged gear). Although expe-
rienced key persons can make proper judgment of failures by inspection
of the measured signals in many circumstances, it would be fairly hard
to do so by moderate staff. Trouble might arise when a fault occurs
whereas the experienced personnel are not around due to some reasons
like vacation and sickness to mention a few. Things turn still tougher
with those sensor signals containing heavy measurement noise such that
even skilled operators fail to distinguish faults without supporting tools.

Construction of automatic diagnosis systems based on Artificial In-
telligence (AI) methods and techniques receives increasing attention for
extending the capability of key personnel and reducing human costs con-
nected with equipment maintenance. Expert systems [1] provide a useful
means to acquire diagnosis knowledge directly from key personnel and
transform their expertise into production rules. However, the knowl-
edge acquisition and verification processes are difficult and complicated
and sometimes experienced technicians even have no idea of how to ex-
press their strategies explicitly and accurately. Rule induction [2, 3] and
neural network models [4, 5] are data mining methodologies that can be
applied to find out fault classification knowledge using previous known
examples. They show strong ability in discovering important knowledge
from historic data but require a sufficiently large training set to ensure
promising outcome and overcome the risk of over-fitting. Unfortunately,
in many practical scenarios, merely a very low number of examples are
available in support of machine learning.
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Case-based reasoning [6] (CBR) offers another alternative to imple-
ment intelligent diagnosis systems for real-world applications [7]. Moti-
vated by the doctrine that similar situations lead to similar outcomes,
CBR fits well to classify the current new sensor signals based on experi-
ences of past categorizations. The main strength lies in the fact that it
enables directly reusing concrete examples in history and consequently
eases the knowledge acquisition bottleneck. It also creates the opportu-
nity of learning from experiences but skipping the step of data training
such that the over-fitting problem no longer exists. We believe that CBR
techniques are of particular application value for diagnosis in real indus-
trial environments where the acquirement of adequate training examples
in advance is mostly not realistic if not impossible.

This paper aims to investigate the utility of CBR techniques for di-
agnosis of industrial equipments based on streams of sensor recordings.
The received signals are processed by wavelet analysis to filter out noise
and at the same time to extract a group of related features that consti-
tutes a reduced representation of the original signal. The derived feature
vector is then compared with the known cases in the case library with
its neighboring cases sorted out, and subsequently the new situation is
classified by combining the outcomes of those similar cases retrieved.
Our presented approach has been applied to fault diagnosis of industrial
robots produced by ABB Robotics in Väster̊as (Sweden) and the pre-
liminary results of evaluation are very promising.

The paper is organized as follows. Section 6.2 gives a general struc-
ture for fault classification starting from streams of sensor readings. Sig-
nal analysis and feature extraction is addressed in Section 6.3, followed
by an outline of necessary details of performing case-based classification
using extracted features in Section 6.4. Section 6.5 gives a case study
applying the proposed approach to fault diagnosis of industrial robots
and some experiment results are demonstrated. Finally the paper is
concluded in Section 6.6 with a short summary and remarks.
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6.2 Fault Diagnosis Based on Sensor Sig-
nals

Abnormality of industrial machines can be reflected by some key states
during their operation. Using sensor technology it is possible to detect
and measure the values of these system states and their profiles. We can
then process and analyse the collected sensor recordings in order to find
out hidden symptoms. The system can, based on the symptoms, reason
about the class of fault associated with the machine or make prediction
about what potential problem is likely to occur in a near future. A
general system structure for this purpose is illustrated in Figure 6.1,
which includes signal filtering, feature extraction, and pattern classifier
as its important components.

Fault Class
Pattern

classifier
Set of related

features
Feature

extraction

Sensor
readings

Signal
filtering

Purified
signal

Figure 6.1: Fault diagnosis based upon sensor signals.

Signal filtering is used to purify original sensor readings by removing
the noises contained in the signals such that more reliable diagnosis re-
sults will be warranted. Usually there are two kinds of noises involved in
the perceived signals; one is measurement noise due to intrinsic impre-
cision of sensors and the other is external noise caused by disturbance
from surroundings and which is added to the sensor data received. Signal
recovery from external background noise has been well dealt with by ap-
plying signal processing methods like wavelet analysis and time domain
averaging (see [8, 9]). The reduction of measurement errors is outside
the scope of this paper, but interested readers can refer to sensor fusion
systems in which Bayesian based filtering approaches such as Kalman
filtering [10] and particle filtering [11] merit to be used to obtain more
accurate estimates of related states.
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Feature extraction is purported to identify characteristics of the sen-
sor signals as useful symptoms for further analysis. This stage is critical
for fault diagnosis in many industrial applications in which the under-
lying system is dynamic. If so, the measurements of a state generally
change with the time rather than constantly staying at a static level.
This means that the observations of the system are continuously varying
which makes it hard to handle them directly in diagnosis. In order to
supply the pattern classifier (in Figure 6.1) with a moderate number of
inputs for effective analysis and reasoning, representative features from
the sensor signals have to be extracted. Our point is that for many tasks
the collection of extracted features ought to be adequate to give a concise
and complete description of the condition of the system to diagnose.

Regarding fault classification a number of different methodologies can
be considered. Expert systems were developed in support of gathering,
representing and utilizing human expert knowledge for problem solving
but they suffer from the knowledge acquisition bottleneck. Regression
functions fit themselves into defining linear classification boundaries us-
ing a low number of attributes as function variables. For complex diag-
nosis situations with nonlinear boundaries and many relevant features
a classifier based on artificial neural network might be a good choice.
Nevertheless the success of neural network functioning is conditioned
upon the prior training of the network with sufficient examples, which
unfortunately are not guaranteed in quite a few industrial environments.
In contrast CBR has the advantages of entailing no training beforehand
but still exhibiting the ability for incremental learning if new useful cases
are properly injected into the case library. This motivates us to develop
a case-based classifier of fault patterns in this paper. We believe that
applying CBR techniques for diagnosis is a strong candidate to deal with
certain industrial problems with a high feature dimension but few known
samples as support.

6.3 Case-Based Classification using Extracted
Features

As mentioned before, the measurements from a dynamic industrial sys-
tem constitute time-varying data streams that are not suitable for im-
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mediate usage. Hence we need to dig out representative features hidden
in the signal profiles prior to fault classification. The features extracted
are delivered to the fault classifier as a probe case. According to the
domain from which features are derived we can distinguish between two
categories of features: time-based features and frequency-based features.

Time-based features are extracted from the profile of signal values
with respect to time. Typical features of this kind can be peak value,
start time, overshoot, rising time, mean value, integral, standard devi-
ation, etc. In practice what features to derive from the time domain is
commonly ad-hoc and problem dependent. An example of using time-
based features for case-based circuit diagnosis is illustrated in [12].

Frequency-based features characterize sensor signals according to their
amplitudes under significant frequencies. As many fundamental signal
analysis methods are available to yield frequency spectra, we seem to
have more solid basis for extracting features based on frequency than for
deriving time-based features. We thus adopt frequency-based features
as descriptors of condition parts of cases in our research. Generally a
vector of frequency-based features is formulated as

FV = [Amp(f1), Amp(f2), ..., Amp(fn)] (6.1)

where Amp(f1) denotes the function of amplitude which depends on
frequency fi and n is the number of frequencies in consideration.

Wavelet analysis [13] is an effective tool of transforming analogue
sensor signals to a frequency spectra. It has been shown to perform bet-
ter than Fourier transform under circumstances with heavy background
noise [9]. Technical details of wavelet analysis for feature extraction
are discussed in [14], wherein a comparative study was also performed
between wavelet analysis and Fourier transform demonstrating the su-
periority of the wavelet approach in producing high quality features for
case-based classification.

After the features have been extracted from the sensor signals, we
perform case-based reasoning to make a classification of the current fault
using known cases in the case library. Figure 6.2 gives an overall illus-
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tration of this procedure, which consists of the following two steps:

1. Retrieval: compare the feature vector with the known cases in the
library by means of similarity calculation and subsequently select
the k nearest cases exhibiting the highest similarity degrees;

2. Solution fusion: determine the fault class associated with the cur-
rent feature vector in terms of both the classes of the retrieved
cases and their similarity values with respect to the probe case.

Library of
known cases

Feature
vector

Fault 
class

Similarity
degrees

Solution
Fusion

Figure 6.2: Case-based fault classification.

Given a feature vector Y = (y1, y2, . . . , yn), its similarity degree with
case C in the case library is defined as

Similarity(Y, C) =
n∑

i=1

wi × (1− |norm(yi)− norm(ci)|) (6.2)

where w1, w2, . . . , wn are attribute weights reflecting different impor-
tance of individual features, ci represents the ith feature of case C, and
norm(yi) and norm(ci) denote the normalized values of yi and ci re-
spectively.
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In the step of solution fusion we can easily judge a fault class if all
the retrieved cases have that class as their outcomes. Otherwise voting
is launched among the classes that exist in the retrieved cases. For every
such class Bj we calculate its voting score as

V S(Bj) =
∑

P∈Rs

{
Similarity(Y,P), if P has class Bj

0 otherwise (6.3)

where Rs denotes the set of retrieved cases and P is the current feature
vector. Finally the fault is classified into the class that has the largest
voting score.

6.4 Application to Fault Diagnosis for In-
dustrial Robots

As a case study we applied the proposed approach to diagnosis of in-
dustrial robots manufactured by ABB Robotics in Väster̊as, Sweden.
The prototype system developed for this purpose is shown in Figure 6.3
Sound signals are gathered from the robot to be tested via a microphone
device and then transmitted to the computer for pre-processing. The
pre-processing is tasked to filter out or remove unwanted noise as well
as identify period information from a sound profile. Subsequently sound
features are extracted from the frequency domain and they are assembled
into a feature vector as a condensed representation of the original sound
signal. Classification of the feature vector is performed based upon pre-
viously classified sound descriptions in the case library. The experiments
have shown that this system is able to successfully diagnose faults in an
industrial robot based on a low number of previous examples.

It is worth mentioning that the above prototype system has some sim-
ilarities with the Open System Architecture for Condition Based Main-
tenance (OSA-CBM) [15]. That architecture suggests that a Condition
Based Maintenance (CBM) system be divided into seven modules [16] in-
cluding sensors, signal processing, condition monitoring, diagnosis, prog-
nosis, decision support, and presentation. The system presented here in
this paper has microphone as sensor module and pre-processing & fea-
ture extraction steps as signal processing module in correspondence to
the OSA-CBM architecture. In addition, the case-based classification in
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Figure 6.3: Schematic outline of the prototype system.

Figure 6.3 also serves condition monitoring by detecting and identifying
deviations in sound profiles.

6.4.1 Pre-processing and Feature Extraction

Sounds of robots in industrial environments typically contain unwanted
noise from background. A robot fault is often indicated by the presence
or increase of impulsive elements in the sound. The detection of these
impulsive sound elements can be hard. This is owing to the various spo-
radic background noises prevalent in industrial environments and they
are added to the received sound signals. Before the attempt of classi-
fication, the sound from the robot has to be pre-processed in order to
remove as much unwanted noise as possible. In Figure 6.4 the two pre-
processing steps are shown which are termed as period extraction (left
box) and time domain averaging (right box).

In order to obtain time information about the robot arm movement,
period has to be detected from the sound profile. A period refers to the
duration within which the robot arm rotates from the start position to
its destination. Commonly sounds from the robot are recorded in a time
span with a few periods. Each period for the robot arm movement is
characterized by a continuous sound followed by a short time of silence.
After getting period information a mean length for periods is calculated
from a number of successive periods of the robot sound, thereby eliminat-
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Figure 6.4: Pre-processing of sound data in the prototype system.

ing sporadic impulsive elements from unwanted sources and enhancing
repeating impulse sound normally related with robot faults.

After identifying period information a set of important features must
be extracted from the sound signal within a single period. Wavelet
analysis is applied herein to find out such features for sound classifi-
cation. In a related paper [14] we experimentally verified that, under
certain circumstances of strong background noise, wavelet outperforms
Fourier transform in supplying distinguishable feature vectors between
different faults for case-based classification.

6.5 Sound Classification and Results

Sounds from 24 healthy robots and 6 faulty robots were collected to en-
able case-based classification of conditions of robots. Two types of faults
need to be recognized in the experiments hereafter called Fault 1 and
Fault 2. A notch on the big gear wheel in the gearbox causes Fault 1.
This fault is hearable and is characterized by a low frequency impulse
sound in the middle of the rotation of the axis. Fault 2 is caused due
to a slack between the gear wheels in the gearbox and can be heard as
bumps at the end of each rotation.

A feature vector is assembled with peak wavelet coefficients taken
from different depths in a wavelet package tree [13] and it is then matched
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with the previously inserted cases in the case library. The prototype sys-
tem demonstrated quite good performance by making right judgements
in 91% of the all tests (see further down). Table 6.1 displays a ranked
list of the three best matching cases in the case library according to the
similarity values calculated. As can be seen from the table, a previously
diagnosed notch fault recording is deemed to be the most similar case
thereby making the strongest recommendation to classify the probe sit-
uation into notch fault. The cases ranked the second (case #12) and the
third (case #4) are descriptions classified as normal in the case library.
This list of the most similar cases can be presented to human operators
as decision support.

Table 6.1: A ranking of the most similar cases for the sound profile.
Case name Similarity Case ranking
Notch fault #2 98% 1
Normal case #12 84% 2
Normal case #4 83% 3

We also investigated the classification accuracy in relation with differ-
ent feature vector sizes in order to assess the smallest number of features
that still produce good classification performance. The diagram in Fig-
ure 6.5 indicates the relation between the classification error rate and
the number of features. The upper curve in the figure shows the results
when only top 1 case was considered for solution fusion. The curve be-
low in the diagram shows the classification results when the top three
cases were considered. When only the nearest case was considered, the
system produced a classification rate of 91%. When the three nearest
cases were considered, the classification rate of the system rose to 99%.

6.6 Conclusions

This paper presents a new approach to fault diagnosis of industrial equip-
ments using case-based reasoning and sensor data. Wavelet analysis is
advocated as an effective means to remove noise and extract a set of
good quality features. The assembled feature vector serves as condition
description of a case. Case-based fault classification gives considerable
benefits in numerous practical applications. They include:
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Figure 6.5: Relation between classification performance and the number
of features.

It fosters experience reuse and sharing in the sense that classified signal
descriptions from different sources can be easily added to a common li-
brary.

• It does not require a complete case library for functioning properly.
As no training of known cases is needed, there exists no over-fitting
risk any more.

• It enables improving classification performance as long as newly
classified signal descriptions are injected into the case library.

• It entails case retrieval, giving intermediate results that are user-
friendly and offer a sort of decision support for human operators
in diagnosis.
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Abstract

Electrical and mechanical equipment such as gearboxes in an industrial
robot or electronic circuits in an industrial printer sometimes fail to op-
erate as intended. The faulty component can be hard to locate and
replace and it might take a long time to get an enough experienced tech-
nician to the spot. In the meantime thousands of dollars may be lost
due to a delayed production. Systems based on case-based reasoning are
well suited to prevent this kind of hold in the production. Their abil-
ity to reason from past cases and to learn from new ones is a powerful
method to use when a failure in a machine occurs. This enables a less
experienced technician to use the proposed solution from the system and
quickly repair the machine.

Keywords: Case-Based Reasoning, Fault Diagnosis, Artificial Intelli-
gence, Machine Learning, Neural Networks.
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7.1 Introduction

This paper addresses case-based reasoning (CBR) (Aamodt, Plaza. 1994)
systems used for diagnosis of machines. The paper is intended to give
the reader a survey of CBR systems in this area. The particular systems
in this survey were chosen because of their well-documented CBR-part
[1] and their application in the area of machine diagnosis. All systems in
this survey were created or reported after about 1999 and are published
in major Proceedings and Journals such as the ECCBR and ICCBR Pro-
ceedings and Journal of Intelligent and Fuzzy Systems.

The paper is structured as follows: Section 7.2 gives an overview of
five CBR diagnostic systems for machines. Section 7.3 discusses and
compares features of the systems. Section 7.4 gives a brief conclusion of
the systems.

7.2 The Systems

This section describes five CBR systems for diagnostics of machines.
The first system is a diagnostic system for locomotives. It collects fault
codes from locomotives and uses them for off-board locomotive diagno-
sis. The second system diagnoses electric circuits. It uses measurement
data from the circuit as features and matches them with similar cases.
The proposed solution is then adapted to the new case. The third sys-
tem monitors the health of satellites by looking for anomalies in the
down linked data from the satellite. The fourth system diagnoses in-
dustrial robots with the aid of acoustic signals. The fifth system uses a
combination of a neural network and CBR to diagnose induction motors.

7.2.1 ICARUS A Diagnostic System for Locomo-
tives

Locomotives are large and complex machines that are very difficult and
expensive to repair. Due to their complexity, they are often best served
and repaired by their manufacturer. The manufacturer often have a long
time service contract with their customers and it is important for the
manufacturer to reduce the service costs as much as possible.
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ICARUS [2] is a case-based reasoning tool for off-board locomotive
diagnosis. Locomotives are equipped with many sensors that can mon-
itor their state and generate fault messages. ICARUS is designed to
handle the fault codes that are generated by the locomotives.

Each fault code is saved in a fault database. Connected to each fault
is a repair log taken from a repair database. The fault log combined
with the repair log is a case in ICARUS.

Most repair logs contains a fault cluster. This means that many small
faults occur before a repair is performed. The cluster of faults is used
as features for case matching. Each cluster is assigned a weight between
1 and 0. The value of the weight is set to represent a clusters ability to
isolate a specific repair code. If a cluster is connected to only one repair
code its weight will be 1. If a cluster is connected to evenly distributed
repair codes in the case base its weight will be lower. Clusters below a
certain weight threshold will be assigned zero weights.

The weights are used in the matching formula. The degree of likeness
between a new case and as stored case is calculated as:

[
∑

wc]
2

[
∑

ws] [
∑

wn]
(7.1)

where

wc = weights in common clusters between stored and new case
ws = weights of clusters in stored case
wn = weights of clusters in new case

The repair code associated with the case with the highest degree of
likeness is the retrieved case.

The system vas validated with a case base consisting of 50 repair
codes. Each repair code was associated with 3-70 cases. Each case
was removed from the case base and matched to all other cases in the
case base. If the repair code of the case was in the top three nearest
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neighboring cases, the match was considered as a success. As a result
the overall accuracy of the system was 80%.

7.2.2 Diagnosis of Electronic Circuits

Diagnosis of electronic circuits is based on the analysis of the circuit
response to a certain input stimuli. Input signals are generated and
measurements are acquired in certain nodes of the circuit. A traditional
way of doing this is to use fault dictionaries. Fault dictionaries are
based on selected measurements on faulty systems. The comparison is
performed by a nearest neighbor calculation and the closest case is taken
as a diagnosis. The problem with fault dictionaries occurs when a new
fault is found that cannot be matched with the ones already stored in
the dictionary. To deal with this a case-based approach is suitable to
be able to automatically extend the dictionary with new faults as they
occur [1].

The case consists of two parts. Part one is the numeric part that con-
tains the case identification number and the measurements taken from
the circuit. The second part contains information about the fault diag-
nosis.

Table 7.1: Case Structure. The Measurement Part.
Case id Measure1 Measure2 ... MeasureN
Case i M1 M2 ... MN

Table 7.2: Case Structure Fault Part
Class Comp. Deviation Hierarchy
Class Comp. X% MiLi

The class corresponds to the class of component that is diagnosed.
The components are divided into different classes if they have different
accepted deviations from their normal value. E. g. +/-10% can be an
accepted deviation for a class of components. The component field con-
tains the component location. The deviation field contains the measured
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deviation of the component. The hierarchy field contains a description
of witch level in the circuit hierarchy the components is.

A normalized Euclidian distance function is used to retrieve the cases
from the case base and the k nearest neighbors where k=3 is retrieved.
The solution is adapted to the new case by transformational reuse [3].
A learning algorithm is then applied to decide whether the case should
be saved as a new case in the case base or not. E.g. if the diagnosis
is correct there is no need to retain the new case in the library. But if
the retrieved cases produce a misclassification of the new case, the case
might be added to the case base according to the results of the learning
algorithm.

The system has been tested with the DROP4 [4]and the All-KNN
learning algorithms. All cases are also equipped with weights to improve
the classification.

A measurement on a circuit is performed resulting in the k=3 nearest
neighbors in table 7.3.

Table 7.3: An Example of Case Retrieval.
M1 M2 M3 Comp Devi

New Case 0.6 0.7 0.2 C1 75
Neighbor1 0.6 0.7 1.1 C1 23
Neighbor2 0.7 0.4 1.3 C1 24
Neighbor3 0.7 0.4 1.3 C2 11

Neighbor 1 and 2 has the same component as the new case but the
deviation is smaller in both cases. Neighbor 3 has a different component.
The new case will be selected as a component C1 because of its similarity
in the measurements. The deviation is far from normal so the case will
be introduces in the case base.

The system has been tested on a filter circuit that is commonly used
as a benchmark for electronic circuits. The filter consists of several ca-
pacitors and resistors. The average result with the All-KNN retain algo-
rithm was 89% and the average result with the DROP4 retain algorithm
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was 88%.

7.2.3 Satellite Diagnosis

Satellites are monitored from the ground using down linked data (teleme-
try). The case-based diagnosis program can be resembled as an expert
apprentice. The program remembers the human experts actions along
with the context that is defined by the down linked data. It then at-
tempts to make its own diagnosis when similar data appears in another
occasion [5].

The features in the case are not state values taken at a certain point
of time. Because of the telemetrys streaming values the features are
instead trends extracted from the streaming data flow. The length of
the trend is different for different parameters. The table below shows a
sample case with two parameters:

Table 7.4: structure of a satellite case (problem part).
Case Length of Sampling Lower Upper
id time series rate bound bound

1234 1000 45 -3 10
2345 2000 60 0 10

A case is constructed from the streaming data at a time called the
case point. A case is constructed looking back from the case point a cer-
tain length of time. The attribute values are picked using a window of
the same length as the sampling rate. For each window only one average
value is saved as representing that window. The length of the time series
corresponding to an attribute is l/s were l is the length specified in the
case schema and s is the sampling rate.

The distance between two time series R, W is calculated by dividing
the time series into smaller sequences Ri, Wi. An Euclidian distance
calculation between each Ri, Wi is performed and a global distance dg

is calculated from all the obtained distances between the time series se-
quences:
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dg (R, W ) =
1
k

k∑

i=1

di (Ri,Wi) (7.2)

The system notifies the user if a new case is considered interesting.
The new case is considered interesting it two ways:

1. A similarity threshold determines if the new case should be con-
sidered as an anomaly. If the similarity of all the retrieved cases is
below that threshold the case is considered to be an anomaly and
the user is automatically notified.

2. If some of the retrieved cases are above the first threshold. Another
threshold determines if the new case is similar enough to some other
case in the case base that is previously diagnosed as an anomaly.
If so the system will notify the user of the type of anomaly. In
both situations the user is able to give feedback to the system.

7.2.4 Diagnosis of Industrial Robots

Mechanical fault in industrial robots often show their presence through
abnormal acoustic signals.

At the factory end test of industrial robots a correct classification of
the robot is very critical. An incorrect classification of a faulty robot
may end up in the factory delivering a faulty robot to the customer.

The industrial robot diagnosis system uses case-based reasoning and
acoustic signals as a proposed solution of recognizing audidable devia-
tions in the sound of an industrial robot [6].

The sound is recorded by a microphone and compared with previ-
ously made recordings; similar cases are retrieved and a diagnosis of the
robot can be made.

Features are extracted from the sound using wavelet analysis [7]. A
feature in the case is a normalized peak value at a certain frequency.
The case contains peak values from many frequencies. The case also
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contains fields for information of the robot model and type of fault (if
any). There is also room to enter how the fault was repaired. Table 7.5.
displays a part of the case structure.

Table 7.5: A part of the case structure for robot diagnosis.
Serial Type Fault Diagnosis Features
Number and Repair 1-n
45634 4500 2 ... ...

Cases are retrieved using a nearest neighbor function that calculates
the Euclidian distance between the new case and the cases stored in the
case library. A list with the k nearest neighbors is retrieved based on
the distance calculations. The system learns by adding new cases to the
case base. A technician enters the diagnosis and repair action manually
in each case.

The system has been evaluated on recordings from axis 4 on an in-
dustrial robot. Sounds from 24 healthy robots and 6 faulty robots were
collected to enable case-based classification of the condition of the ro-
bots. The prototype system demonstrated quite good performance by
making right judgments in 91% of all tests.

7.2.5 Induction Motor Fault Diagnosis

Induction motors are very common within industry as prime movers in
machines. Induction motors has a simple construction and are very re-
liable. But working in a tough environment driving heavy loads can
introduce various faults in the motors. A system for fault diagnosis of
induction motors is presented here. The system has interesting features
such as a neural network combined with a case-based reasoning system
[8].

A case consists of 6 categories of features and 20 variables. Among
the variables are measurement positions, rotating frequency components
and characteristic bearing frequencies. The case also includes the type
of machine to be measured, the symptom, the corrective action etc.
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The system uses an ART-Kohonen neural network [9]) (ART-KNN)
to guide the search for similar cases in the case base.

CBR is used to select the most similar match for a given problem.
The advantage with the ART-KNN compared to other neural networks
such as the Kohonen Self Organizing Map [10] is that it can learn new
knowledge without losing old knowledge. When a new case is presented
to the system the ART-KNN learns the new case in one of two ways:

1. If the similarity of the new case compared to the cases already
learned by the network is below a certain threshold; the similarity
coefficient. The network learns the case by adding new nodes to
its layers.

2. If the similarity of the case is above the threshold, the network
learns the case by adjusting its old nodes to resemble the new
case.

Cases are then indexed in the case base by clusters of features in the
ART-KNN. The indexed cases are then matched against the new case
with a standard similarity calculation.

The system has been tested with measurements from an AC motor
in a plant. The motor had a rotor fault witch resulted in high levels of
noise and vibration. The system was trained with 60 cases containing
different motor defects such as bearing faults, rotor damages and com-
ponent looseness.

The system retrieved two previous cases from the case base together
with results from a modified cosine matching function. The retrieved
cases both indicated a bearing fault. The average result of a test of all
cases in the case base was 96,88%.

7.3 Discussion

When comparing different case-based reasoning systems with each other
one must focus on the features that are shared by all case-based reason-
ers.
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Below is a comparative discussion of five common problems that has
to be faced when implementing a case-based reasoner and how they are
solved in each system. The problems are as follows:

1. Feature extraction and case representation.

2. Case retrieval and indexing.

3. Case reuse.

4. Case revision and retain.

5. Case base maintenance.

1. ICARUS uses combinations of fault codes as features because
that is the way a locomotive signals its faults. A repair action on a
locomotive is also very expensive, thus several faults must be combined
before a repair action can be executed. Often machines cannot provide
such fault codes. Instead features such as filtered measurements from
different kinds of sensors are used. This is the situation for the elec-
tronic circuit diagnosis system, the induction motor diagnosis system,
the satellite diagnosis system and the industrial robot diagnosis system.
They all collect single measurements or time series measurements, e.g.
current, vibration, acoustic signals, streaming telemetry data etc. The
data collecting sensors can be an integrated part of the object or an ex-
ternal portable measurement device.

The basic case representation is similar for the systems in this survey.
The three basic components of the case are the features, the problem de-
scription and the repair action. Sometimes the repair action is implicit
in the fault description. As in the electronic circuit diagnosis system,
the repair action is equal as to replacing the faulty component.

2. The case retrieval process most commonly uses some kind of dis-
tance calculation combined with weights to calculate a distance between
the new and stored cases. The k nearest neighbours to the new case is
then retrieved. This kind of retrieval is used in all systems except the in-
duction motor diagnosis system and the satellite health diagnosis system.
The satellite health diagnosis system uses two similarity thresholds; one
for anomaly detection and one for event detection. The induction motor
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diagnosis system uses a neural network to first index relevant cases in
the case base. After that a straightforward k nearest neighbour distance
calculation is performed to calculate the distance between the indexed
cases and the new case.

3. All systems in this survey implements the reuse phase by sug-
gesting the diagnosis extracted from the retrieved k nearest neighboring
cases. The satellite diagnosis system also has a threshold for sorting out
irrelevant cases not to be considered for reuse. In addition to this form
of reuse the circuit diagnosis system uses adaptation [3] by transforming
the past solution of the k=3 nearest neighbors to an appropriate solution
for the new case. The new solution is then inserted into the new case as
the proposed solution.

4. The simplest form of retaining is to just add the new case in the
case base. The industrial robot diagnosis system uses this kind of retain-
ing (the robot diagnosis case base is then manually investigated by an
experienced technician in order to remove irrelevant cases and provide
relevant cases with more diagnostic information). To few removals of
cases can in time cause problems with an overfilled case base making the
system perform less well. Most system implements some kind of user
interaction before a case is retained. This is performed in the satellite
diagnosis system and in ICARUS by letting an experienced technician
decide whether the case is relevant or not. The retaining process can be
extended by calculating if the new case has any ability to improve the
future diagnosis of the system. The simplest form is to look if a similar
case already exists in the case base. If it does, there is no need to retain
the case. The circuit diagnostic system also incorporates a machine-
learning algorithm that calculates the ability of the case to improve the
performance of the system.

5. Most systems in this survey are only prototypes and have not yet
implemented any automatic maintenance process of the case memory.
The circuit diagnosis system implements a confidence factor [11] to pre-
vent bad cases from spoiling the performance of the system. The case
base is maintained by removing cases when the performance of the case
drops below a certain confidence index.
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7.4 Conclusions and Further Work

This paper has briefly described five intelligent machine diagnostic sys-
tems that use case-based reasoning as their primary approach to problem
solving. Case-based reasoning is still new in the area of fault diagnosis
of machines and most systems in this survey are still prototypes. Some
parts of the CBR process seem to be implemented to a higher extent than
others in the systems. E.g. feature extraction and case retrieval seems to
be fully implemented but adaptation is not widely implemented. Also,
automatic maintenance of the case memory seems not to be implemented
in the majority of the systems in this survey.
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Abstract

Some gear faults in industrial robots can during operation be recognized
as abnormal noise peaks coming from the gearbox. A library of such
recordings has been assembled in order to automate fault diagnosis of
the robots. A computer records sound from the gearbox and compare
the new recordings with recordings stored in the library. The result of
the comparison is a diagnosis of the condition of the robot. This paper
proposes an extension of the sound library by incorporating model based
reasoning. A dynamic model of the gearbox in the drive system has been
constructed and gear vibrations on the force level are extracted from the
model. These vibrations are projected onto the sound recordings with
a statistical vibration diagnostic parameter known as the Crest Factor
(CF).
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8.1 Introduction

A case-based prototype system that makes a diagnosis based on record-
ings of noise from an industrial robot has previously been implemented
[1]. The prototype system analyzes the recordings using Fast Fourier
Transform (FFT) [2] for feature extraction and case-based reasoning [3]
to make a diagnosis of the condition of the gearbox of the robot.

Gearbox dynamics often has a strong impact on the performance of
the system vibrations. In this paper we use the Modelica.Mechanics.Rotational
Library [4] to simulate gearbox torques, especially for the output shaft
with an applied payload. The simulations were then compared with
sound recordings from one normal and two faulty gearboxes.

It is difficult to simulate gearbox effects and to get a reasonable agree-
ment between the measurements and the dynamic simulation. To solve
this problem we represented the simulation results and sound recordings
by means of the Crest Factor (CF) [5]. CF is defined as the maximum
value of a signal normalized by the RMS value. CF aids the comparative
study between noise measurements of normal and faulty gearboxes as
well as providing a mean to compare these noise measurements against
the simulation results measured on the input and output shaft of the
model.

The gearbox model is created in Dymola and is characterized by
tooth contact stiffness, backlash and efficiency. The model has a correct
representation of the relation between force and vibration. Several pa-
rameters can be altered in order to produce different simulation results.
The results of the simulation represent an oscillation of torque on the
input and output shaft of the gearbox model.

In the majority of cases the regular vibrations and noise effects in the
gear sets have been predicted theoretically as well as experimentally by
measurements. The theoretical description of the gear noise phenomena
has been based mainly on force analysis of multibody models undergoing
non-linear tooth and bearing contact conditions, inertia masses and the
influences of the applied excitation torques. Those directions are highly
complicated and involve problem identification, a mathematical formula-
tion and numerical methods. To reduce the gearbox simulation problem
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to its simplest form we can use modern software e.g. the Dymola tools
and Modelica Mechanical Library [4, 6].

8.2 Sources of Gear Noise

An ideal gearbox with rigid equally spaced gears, accurate teeth and
good lubrication would transmit minimal noise and vibrations. All kinds
of deviations from this ideal gearbox cause an increase in vibrations and
noise. In the majority of cases the source of noise and vibrations is
transmission errors introduced during manufacture. These errors can
e.g. be geometry inaccuracies and eccentricities which both result in
impact noises [7]. Other sources of impact noises can be gear rattle.
Gear rattle is caused by a combination of backlash and unloaded gears.
Friction and pitting due to gear fatigue is also a source of noise [8].

Most modern techniques for gear diagnostics are based on the vi-
bration signal picked up by an accelerometer from the gearbox casing.
The vibration signal is normally filtered by time synchronous averaging
(TSA) and analyzed in the frequency domain with methods such as the
Wavelet Transform (WT) or the FFT. A similar approach is to use a
microphone instead of an accelerometer and record the noise from the
gearbox. This method was used to detect faults in industrial robots [1]
and further work on noise recordings is also presented in this paper.

The expected noise spectrum from a gearbox should contain the gear
meshing frequencies and integer multiples of it. There is also common
with harmonics and sidebands due to gear eccentricities and geometric
errors. Figure 8.1 shows an FFT of the recorded noise of an industrial
robot.

The recordings are first pre-processed in order to remove unwanted
noise. In this case the recordings are filtered with a low pass filter that
removes all noise above 200 Hz. The result contains the most important
meshing frequencies, which localizes the amplitude increments during a
rotation period. These amplitude increments arise from the transient
force effects introduced by the cracked tooth in the driven gear wheel.
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Figure 8.1: FFT spectrum of gear noise analysis.

8.3 Simulation of a Drive Model in Dymola
/ Modelica

A dynamical model enables a visualization of how a typical design of
a multibody system performs with emphasis on our target. This was
achieved with the Dymola tools and the Modelica Library [4, 6]. The
components in the Modelica Mechanical Rotational package was devel-
oped for the fundamental units of a mechanical system e.g. inertia, gear,
gear efficiency, friction in bearings, clutches, brakes, external torques,
backlash, cut of torque of a flange and others. Every basic mechani-
cal component from the Modelica Library has at least one interface to
connect the element rigidly to other mechanical elements. The under-
lying feature of this library is the component-oriented modeling, which
is based on the solution of mixed continuous/discrete systems of equa-
tions, or DAE’s equations. Figure 8.2 presents a structural model of
the gearbox drive train where T1−2 stands for input and output torque,
f1−2 represents the rotational speed of the input and the output shaft
and Z1−4 represents the number of teeth on each gear.

Figure 8.3 presents a composition diagram of a sample system build
in the Dymola environment with icons from Modelica. It is a composite
model, which specifies the topology of the system to be modeled in terms
of components and connections between the components.

The following setup parameters and assumptions are applied to the
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model simulation: I1 = 0, 6kgm2 is a motor inertia (pos.3 on diagram)
that is driven by a sinewave motor torque T1 (pos.1 and 2 on fig.3).
The torque sinusoidal signal is provided by the values: torque amplitude
Ta = 12nm and simulation (case-study) frequency fr = 0, 4; 0, 5Hz
(rps). These frequencies are obtained from a real time rotation period of
a robot arm. The rotation period of the robot arm is τ = 2−2, 2sec. Via
a gearbox (pos.4) the rotational energy is transmitted to a load (inertia)
I2 (pos.5). For simulation purpose we used the following variable cases
of the inertia of the load: I2 = 20; 40; 50kgm2.

I1 motor

I2 load

Z1, Z2, Z3, Z4

1

2

T1, ϕ1

T2, ϕ2

Figure 8.2: Dynamical model of the gearbox drive.

The library gearbox model is specified by the statement Gear2 i =
100 (see Figure 8.3). It is a component assembly model of several com-
ponents taking essential effects of gear vibration and noise into account.
This leads to different faults between gears teeth. In particular, compo-
nent lossyGear defines gear efficiency due to friction between teeth and
bearing friction and component elastoBacklash defines gear elasticity,
damping and backlash.

For simulation purposes we tried to adjust the parameters of the
simulated gearbox as close to the parameters of the actual gearbox as
possible. The parameters set were:

• Transmission ratio

• Bearing friction
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Figure 8.3: Composition diagram of the gearbox drive in Dy-
mola/Modelica.

• Gear elasticity

• Total backlash

We simulated the model with three different payloads. Each simula-
tion was run for 30 seconds. One simulation case is shown in Figure 8.4.
Figure 8.4 presents a plot of the behavior of the internal torques on the
driven shaft by the variable Inertia2 flangea tau. We then applied the
CF formula on all obtained data. All calculation results are prepared in
table 1.

8.4 Noise Experimental Setup

The gearbox of an industrial robot was used to perform the testing. The
robot was mounted in a test cage and a microphone was attached to the
gear housing of the axis.

The tested gearbox consists of a common drive train. The drive train
has two helical gears driven by a pinion gear that is mounted on the shaft
of an electrical motor. The output gear is directly mounted on the robot
axis.
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Figure 8.4: Torque on driven gearbox shaft. Time history. Fr=0,5 Hz;
J2=30 kgm2.

The gear ratio of the gearbox is 100. It means that one revolution
on the output gear corresponds to 100 revolutions on the pinion gear.

The tested gearbox is protected by a housing on which a microphone
was attached. The location of the microphone was selected in order to
get it as close to the gear drive train as possible. A magnet was used
to attach the microphone. The microphone is of a common capacitor
type and was connected to the sound card of a computer. The sampling
frequency was 8 kHz.

8.5 Recording of Noise

The axis was run back and forward with a driver pinion speed of 270
rad/s during the recordings resulting and in an output (driven) shaft
speed of about 2.7 rad/s. The recorded unfiltered sound is shown in
Figure 8.5.

The figure shows three periods of rotations of the output axis. The
rotational speed of the output axis is 2.7 rad/s. Two types of faults were
observed and recorded with the procedure described above. The sources
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Figure 8.5: Unfiltered noise.

of the faults were:

1. A notch on the output gear

2. Play between the transfer gear and the output gear

The noise signal from the gearbox needs to be pre-processed in order
to extract information about the condition of a specific gear wheel. As
can be seen in fig. 1 the meshing frequency of the output gear is below
200 Hz and thus all frequencies above 200 Hz was removed by a low
pass filter leaving only frequencies from 0-200 Hz in order to reveal the
impulse peaks from the noisy sound recordings. A filtered recording of
a fault caused by a notch on the driven gear is shown in Figure 8.6.

The peaks at time 3.9 and 6.3 seconds in Figure 8.6 is the result
of a small notch on the output gear. The notch is only visible in one
direction of rotation and thus leaves the two surrounding periods unin-
fluenced. The notch is repeated every full rotation of the gear with the
same frequency as the rotation speed of the gear.

In Figure 8.7 there are peaks visible in the end and the beginning of
each rotation of the gear. These peaks are the results of play between
the transfer gear and the output gear. At the end of each rotation the
force between the transfer gear and the output gear is radically increased
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Figure 8.6: Filtered sound with notch fault.

 

A
m

pl
itu

de

Time (s)
0          1          2          3          4          5          6          7          8          9    

Figure 8.7: Filtered noise with play fault.
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causing a backlash with a resulting impulse noise.

8.6 Crest Factor and Results Comparison

In order to make a comparison between the previously explained simu-
lation results and the obtained sound recordings CF was introduced and
calculated for each recorded fault and for each simulated fault. CF is
based on the Root Mean Square (RMS) value of a signal. RMS is a sim-
ple measurement of the fluctuating effect of the signal. RMS is defined
to be the square root of the average of the sum of squares:

RMS =

√√√√ 1
N

[
N∑

i=1

(Si)
2

]
(8.1)

CF is calculated by dividing the peak value of a signal with the RMS
of the signal (see 8.2). CF is based on the simple assumption that a
signal with a few high amplitude peaks would produce a greater CF than
a smooth signal. CF is a normalized parameter suitable for comparison
between different measurements results.

CF =
Smax

RMS
(8.2)

The results of the calculations of CF for the filtered recording of the
gear notch fault and the gear play fault are shown in Figure 8.8 and in
Figure 8.9 respectively.

The CF produces prominent peaks at each notch. The energy of the
peaks is about seven times the average value of the CF.

The CF produces prominent peaks at each change of rotation of the
axis. The energy of the most prominent peaks is more than four times
the average value of the CF. Results from calculations of the CF para-
meter can be seen in table 8.1.

The CF was calculated on two types of data:
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Figure 8.8: CF on notch fault.
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Figure 8.9: CF on play fault.
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Table 8.1: CF parameter value from simulation and noise recordings.
Test type Variable parameters Mean CF Peak CF
Torque Sim. Applied payload 10kg 1.16 1.18
Simulation Applied payload 125kg 1.14 1.15
Simulation Applied payload 200kg 1.15 1.17

Faults type
Filtered Noise Gearbox in normal cond. 2.51 3.43
Filtered Noise Gearbox with play fault 2.94 9.35
Filtered Noise Gearbox with notch fault 2.92 14.6

1. On low pass filtered noise signals. Recorded from the gearbox of
an industrial robot

2. On the simulated torque from the input and output shaft of a
dynamical model of the gearbox.

8.7 Conclusions

CF is able to make a normalized parameter from a low pass filtered noise
spectrum that can be useful for fault monitoring of the gearbox. The
CF increased with more than 200% on sound recordings in faulty case
gearboxes compared to recordings of normal gearboxes.

The simulation results are available for engineering design. They
can predict the tendency of faults development during the operating pe-
riod while the design is subjected to varying parameters such as inertia,
external torque and frequency/speed. Normal gearboxes with different
payload setups were simulated in the component model. They resulted
in a low and stable CF. Those results are closer to the calculations of CF
from the recording of the normal gearbox than to the CF of the noise
recordings of the faulty gearboxes. The CF obtained from the simulation
and the experimental noise spectrum from the normal case gearbox is
correlated.

Other useful results from this work consist in the following: for a
comparative study of the dynamical behavior and vibration effects in



74 Paper C

gearboxes the statistical methods and factors are reasonable for faults
detection.
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