
Automatic Generation and Validation of Models of Legacy Software

Joel Huselius, Johan Andersson, Hans Hansson, and Sasikumar Punnekkat
Mälardalen Real-Time Research Centre, Mälardalen University, V̈aster̊as, Sweden
{joel.huselius,johan.x.andersson,hans.hansson,sasikumar.punnekkat}@mdh.se

Abstract

The modeling approach is not used to its full potential in
maintenance of legacy systems. Often, models do not even
exist. The main reasons being that the economic implica-
tions and practical hurdles in manually maintaining models
of in-use legacy systems are considered too high by the in-
dustry. In this paper, we present a method for automated
validation of models automatically generated from record-
ings of executing real-time embedded systems. This forms
an essential constituent of a unified process for the auto-
matic modeling of legacy software. We also present a study
in which we automatically model a state-of-practice indus-
trial robot control system, the results of which are clearly
positive indicators of the viability of our approach.

1. Introduction

A large part of the industrial systems in use today are
complex and software controlled, consisting of millions of
lines of code. Many person-years have been invested in
these systems, and a large group of people have contributed,
some of whose services may be unavailable today (i.e. they
were hired by third party, have quit their employment, or
even passed away). These systems are labeledlegacy sys-
tems.

Models are important for understanding software and
for ensuring quality in the kind of large scale development
process required to develop and maintain legacy systems.
However, in practice, a common problem is that the mod-
els and the actual implementations diverge over time, ulti-
mately making the model invalid and thus unusable. This in
turn, can lead to reduced quality of the code-base.

To increase the effectiveness of large scale modeling, we
must solve two fundamental problems:

1. How to construct models of large and complex legacy
systems, with minimum interference to their continu-
ous evolution/maintenance?

2. How to enforce consistency between the model and the
modeled system?

Our thesis is that an automated process for modeling
based on execution traces can produce models of systems
without interfering with maintenance. Additionally, if such
a process can be fast and cost-effective, then the consistency
problem can be taken care of by repeated application of the
process as often as is necessary. In this context, we have
worked towards a process for automated modeling based
on data collected through recordings of executing real-time
systems. We have published a method for automated model
generation [4]. However, in a process for automated mod-
eling, the model generation must be complemented with a
test of model validity, thereby making sure that the model
faithfully captures relevant aspects of the modeled system.

In this paper, we extend our previous work on model gen-
eration with a method for automated validation. Using these
two essential ingredients, viz., model generation and model
validation, we present an iterative process for model con-
struction. Iterations in the process are made when a gener-
ated model is invalidated with respect to the system it mod-
els. In this way, the risk of inconsistency is reduced. We
have investigated the feasibility of this process on a state of
practice industrial robot control system.

The outline of this paper is as follows: Section 2 provides
background and basic definitions. Section 3 presents auto-
mated model validation. Section 4 presents a case study on
applying model generation and model validation to a legacy
system. Section 5 presents related work, and Section 6 con-
cludes the paper.

2. A unified process

Using automated model generation and automated
model validation, a unified process for automated model
construction can be designed, as shown in Figure 1. The
process uses information extraction, model generation, and
model validation techniques in order to generate a valid
model using as little information extraction (e.g. monitor-
ing) as possible.

L
e

g
a

cy
sy

st
e

m � �

 	
�

�
	M

o
d

e
l

� -

�

-
-

���
Information
extraction

Model
generation

Model
validation

PPPPP
�����

�����
PPPPPImprovement

possible?

PPPPP
�����

�����
PPPPPModel

valid?

Failure

Success

?

?

?
-

6

No

�Yes No

?

Yes

?

Figure 1. A process for automatic generation
and validation of legacy software.

Model
New
model System

New
system

6 6 ? 6

6

?

m- Design
update

- Update
model

- Analyze
model

6
PPP

���
���

PPPGood
model?

No Yes

?

- Impl.
design

Figure 2. Model-based impact analysis.

One important motivation for our work is that system
designers can use the automatically constructed models to
prototype future design propositions [2] (see Figure 2). First
(not shown in the figure) a valid model of the existing sys-
tem is automatically generated. Second, a design proposi-
tion is constructed. Third, the generated model is manually
modified to reflect the proposed modifications. Fourth, the
properties of the modified model are analyzed with respect
to timing and resource utilization. If the analysis show no
evidence of problems with the design proposition (i.e. re-
quirement violations), the design is implemented. Other-
wise, a new design proposition is formed, and the process
is restarted. We label thismodel-based impact analysis, the
purpose of which is to avoid bad designs without actually
implementing them. As it can reduce the time spent and
wasted on bad designs, early identification and rejection of
infeasible design alternatives has the potential of substan-
tially reducing the cost of maintenance.

2.1. Recordings and data-structures

We assume that the legacy system consists of a set of
tasksthat can either be event or time triggered. As a task
is triggered, ajob is executed for some period of time, after
which the task will await until further triggering.

Recording of selectedeventsis fundamental to our ap-

proach for automatic modeling. We are capable of han-
dling the following events: send and receive operations pro-
viding interprocess communications (ipc), variable updates,
and context switches. The list can easily be extended to in-
corporate semaphore operations as well. On processing the
recordings, selectedactionsare identified. With the current
list of events, the types of actions are: ipcsendandreceive
operations,endof a job, variableupdatesandexecutestate-
ments, the latter of which model the consumption of CPU
time. For each type of action, we assume that the following
properties are associated:

receive: queue id, timeout, prm;

send: queue id, message, prm;

update: variable id, value, prm;

execute: time interval, next action, prm; and

end: time interval, prm;

where id denotes a unique identifier,previously received
message (prm)denotes the value of a message received by
a receive action that occurred immediately before the cur-
rent action, andnext actiondenotes the type of the action
immediately following the current action.

We use two different data-structure representations for
the actions observed in the recordings: Therecorded se-
quence (hereinafter referred to as recseq)is a sequential
list of elements〈id, g, a〉, wherea is the action guarded by
the data-stateg (a data-state being a unique assignment of
values to the monitored variables). Themodel tree (here-
inafter referred to as modtree), which is a representation of
the model of a task produced by model generation.

A modtree is a tree of modtree-elements, which are tu-
ples〈id,G, a, S, c〉, where:G, the guards, is the set of valid
data-states for the modtree-element,a ∈ Actions is the ac-
tion of the modtree-element,S, the set of successors, is a
list of possible modtree-elements for subsequent execution
after the actiona has been performed, andc is a counter that
reflects the number of observations of the modtree-element,
made in the recordings used to construct the modtree.

For recseqr and modtreem, we use a dot-notation
(e.g.r.a andm.id) to refer to their corresponding attributes.

2.2. Examples of recseq and modtree

As an illustration we will use a running example of mod-
tree and recseq introduced in figures 3 and 4, respectively.

The intuition of the recorded sequence recseq is that it is
a sequential list of jobs of a task; Figure 3 shows two sub-
sequent jobs of Task T. Each event in the list corresponds
to one and only one observation. Thus, the elements of the
recseq are well defined in the sense that there is only one

valid data-state for each element, and if the type of the ac-
tion is execute, there is only one time in the time interval.
We have omitted the guard of the recseq since it is only used
in model generation and the main focus of this example is
model validation.

Figure 3. A recorded sequence (recseq).

Figure 4. A model (modtree).

In the example of a modtree in Figure 4, we have omit-
ted some information such as them.c, but in the rightmost
corner of each modtree-element, we show the correspond-
ing unique identifier. In element 1, which we refer to as
m|m.id = 1, a message is received on queue1. Regardless
of the value of a received message, a selection dependent on
the value of variableA follows. In case the variable has the
value7, a stochastic selection is made between elements3
and4. The probabilities in the stochastic selection are cal-
culated based on them.c property of the elements in the

selection. Say thatm.c|m.id = 3 has the value360 and
that m.c|m.id = 4 has the value688, then the probabil-
ity of selecting the path that starts with element3 would be
360/(360 + 688).

The modtree implements alazy updatemodel, where up-
dates take effect only after the job is completed [4]. This can
be observed in Figure 4 in the result of updates in elements
5 and7, and guards on elements8 and10. The concept of
lazy updates is not important for this paper. It is used to
maintain a compact, yet correct, modtree when guards of
elements can accept several values for the same variable.
Without lazy assignment, the model may allow false posi-
tives later in the job if paths are split based on the original
value of the variable.

2.3. Automated model generation

Our method for model generation [4] requires as in-
put a set of recordings covering at least system calls
(e.g. send/receive actions) and context switches. Option-
ally, data-state in the form of variable assignments can be
included for more detailed models. Each recording is first
processed to separate the individual tasks of the system. For
each recording, this results in one recorded sequencerecseq
for each task. According to a set of rules, the collected rec-
seqs of each task are then composed into amodtree,which
can be translated into the probabilistic modeling language
ART-ML introduced in [11]. In this way, a separate model
is produced for each task in the implementation. The col-
lection of ART-ML models for all the tasks in the system
can then be co-simulated and analyzed. Using our method
for model generation, without loss of functionality, we are
thus able to separate the concurrent tasks of the system into
one modtree per task.

3. Automated model validation

As the model generation phase may have to be iterated in
order to find an appropriate probe setting resulting in an ac-
ceptable model, efficient automated modeling requires auto-
mated model validation. This section shows how to perform
validation by testing the generated model of each task (in
the form of a modtree) against a new set of recorded traces
(a set of recseqs) obtained by recording the execution of the
modeled system. The test serves to determine whether if
more, longer, or more detailed traces are needed for model
generation to produce models of the required quality. To
this end we need techniques to compare the modtree with
the set of recseqs. The necessary techniques can be found
in automata theory; model checking would allow us to com-
pare the two, since it is possible to formulate the inclusion
checking as a reachability problem. As we are concerned

with real-time systems, timed automata theory is a natural
choice.

We follow the definitions of timed automata given in [3],
which extends [1] by adding integer variables. Using inte-
ger variables allows for expressing causality between jobs
(for example modeling mode changes) and for communi-
cating action-properties between the automata.

The two automata are constructed so that the automaton
for the model is a tree-like structure while the automaton
for each recording is sequential. A proof that the recorded
traces are contained in the model is constructed by using
model-checking to verify the reachability of the final state
of each trace automaton when composed with the model au-
tomaton. The objective is to show that the action-properties
in the recseqs does not contradict the modtree. The modtree
is discarded if any of the tests fails. Otherwise, we conclude
that the model is valid. The size of the set of recseqs deter-
mines thevalidity measure: the level of confidence that can
be placed in the final model.

The following must be solved to achieve automated
model validation:

A. Obtaining the automata. We need a translation from
the modeling language to timed automata and from
traces to timed automata.

B. Stopping criteria. It must be possible to determine
when sufficient validity has been established.

C. Allowing leeway. Since the model is meant only to be
an abstraction of the system that is modeled, the model
should be allowed to differ slightly from the traces.
The validation must be able to allow a user-defined
leeway for the model with respect to the system. A
variable leeway will provide the user with the ability
to decide the granularity of the solution taking into ac-
count the constraints on cost and effort as well as the
precision necessary for the intended use of the model.

Since the solutions to C influences the solution to A
above, we present our solutions in the order they appear in
the solution.

3.1. Allowing leeway

A useful model should be an abstraction from the sys-
tem that it models. Since we are primarily interested in
modeling real-time systems, this requires the model to be
a timely abstraction of the system. As an abstraction, the
model cannot be a perfect reflection of the system. Rather, it
should provide a similar behavior while being significantly
less complicated than the modeled system.

We choose to realize the abstraction, or leeway, by relax-
ing the timing requirements in the timed automata for rec-
seq. Each time observationt in the recseq is replaced by the

interval(t−pp, t+pp), wherepp is a user suppliedprecision
parameter, thus providing the ability of passing validation
even though the model does not exactly correspond to the
modeled system.

3.2. Obtaining the automata

Figure 5. A timed automata representation of
the recseq, using a precision parameter of 5.

As our model is represented by a modtree and the traces
by recseqs, translations from modtree to timed automata
and from recseq to timed automata are required. As per the
definition of timed automata [1, 3], we need to obtain the
following to perform a translation to timed automata: the
set of locations in the automaton, its initial location, and its
set of edges. Each edge is given by: the guards (originat-
ing both from variables, clocks, and action properties), the
action, and the clock resets and the variable updates.

Using a set of recursive functions (published in a techni-
cal report [5]), we can define the translation of the modtree
and the recseq into the corresponding automata.

For our example in figures 3 and 4, this results in a set
of automata as described by figures 5 and 6, respectively.
The set of locations and the initial location are derived from
the unique identifiers of the modtree and the recseq, respec-
tively. For each valid data-state in an element of a modtree
or recseq there is an edge in the corresponding automata. In
the modtree-automata, the handling of several states in one
element is exemplified by the two edges with receive-action
from the initial location L0, which has two outgoing edges
to the subsequent location L1.

The execute- and end-actions need to be given special

Figure 6. A timed automata representation of
the modtree.

treatment. The execute-actions are modeled as clock guards
on edges of other events in the automata, as can be seen in
the two update edges (see transitions L1-to-L2 and L1-to-
L4) and the send edge (transition L1-to-L3) of the modtree-
automata. Intuitively, the automata will remain in the lo-
cation with the guarded edges (e.g. L1) until execution
time has been consumed. If the modtree-automata and the
recseq-automata have contradicting views on the required
execution time, the composed automata will result in a
deadlock, which signifies that the model is invalid. In the
recseq-automata, we note the precision parameter used to
allow leeway in the validation.

The end-actions are modeled as two edges, one with
the actionend(e.g. L2-to-L5), and one sequentialε-action
(e.g. L5-to-L0). Following the concept of lazy update [4],
in theε-action, the set of updates-actions performed during
the job are actuated. For periodical tasks, the blocking time
preceding the next consecutive job of the task is modeled as
a clock guard on theε-action.

To ensure correspondence between the action-properties
in both automata, the preceding edge of the recseq will
perform a set of updates that are checked by the modtree-
automata. This is apparent in the first edge of the recseq-
automata, where anε-action is used to initiate the global

variablesid andto . The variables are subsequently used
in the guard of edges in the modtree-automata from L0-to-
L1.

3.3. Stopping criteria

We use two validity measures on the jobs observed to de-
termine whether we have performed enough testing to make
us confident that the model is an adequate abstraction of the
system. We also require that the validation fulfills certain
user defined criteria based on these measures:

• Completeness measure, i.e. the probability that the
model can replicate any job that the system can exhibit.

• Accuracy measure, i.e. the probability that the system
exhibits a particular job must be sufficiently close to
the probability that the model exhibits an equivalent
job.

To this end, we need a new notion for estimating equiva-
lence between observed jobs. Using such a notion, we will
be able to group the jobs into classes and estimate the above
measures based on the properties of the classes.

Definition 1 (Syntactic equivalence).Two jobs of a task
are syntactically equivalent iff their action sequences, vari-
able updates, and outputs coincide.

Intuitively, syntactic equivalence can be tested using a
symmetric version of the timed automata test described
above, except from the demands on timing. In our example,
due to the functionality of the model generation process, the
number of syntactic equivalence classes (SECs) in a mod-
tree is the same as the number of end-actions in the modtree.

The completeness measure is assessed by analyzing the
frequency with which new SECs are discovered in the
recording of the system. We start out with the set of SECs
identified in the recordings used to generate the model (see
Figure 1), and we assume that the probability of discovering
a job of an unknown SEC follows a binomial distribution.

There is a plentitude of ways to determine how many
recseqs needs to be tested to satisfy a given completeness
requirement. Essentially, we want to know the number of
tests (i.e. recseqs) needed to attain a certain confidence in
the modtree. For example, if we state the null hypothesis
h0 that there are more SECs than have discovered so far,
with probability π0 ≤ 0.01 of falsely rejectingh0, with
significanceα = 0.01 and margin of errorε0 = 0.01, we
can estimate that the required sample size is lower than1000
according to Jeffrey’s100(1− α)% confidence limits [7].

The models produced are probabilistic – that is, the
model can use probability to determine selections at behav-
ioral level – which requires that the model has valid estimate

of the probabilities of different SECs. Theaccuracy mea-
sureshould determine if these estimates are valid, i.e. within
allowed tolerances.

Let G denote the set of jobs used to generate the model,
and V the set of jobs used for validation. Internally, we
group the jobs into SECs and analyze the probability distri-
butions of equivalence classes in the two setsG andV . For
the analysis, we let the functionsec cnt : 2job × SEC →
Z∗ denote the number of jobs of a SEC in a set of jobs.
The functionh : SEC × 2job × 2job → Z∗ compares the
probabilities of a SECn in G andV .

h(n, G, V) =
∣∣∣∣sec cnt(G, n)

|G|
− sec cnt(V, n)

|V |

∣∣∣∣ (1)

The lowerh(n, G, V) is, the more accurate the model
is. We specify an accuracy thresholdha that is the maxi-
mum allowed difference between probability of equivalence
classes in the two traces. The objective is to ensure that, for
all identified equivalence classesn, h is below this thresh-
old, i.e.:

∀n : 0 ≤ h(n, G, V) ≤ ha (2)

In our example, three different SECs are identified:sec0,
sec1, andsec2. Based on them.c information, we can cal-
culate the probability of each SEC, for exampleP (sec0) =
30%, P (sec1) = 50%, andP (sec2) = 20%. The accuracy
threshold is set toha = 1%.

After model checking recseqs with a total ofc jobs,
without finding any error in the model, the validation mea-
sures are examined: Suppose that the accuracy measures
found wherePc(sec0) = 20%, Pc(sec1) = 55%, and
Pc(sec2) = 25% – which is not withinha for this first mea-
surement, thus implying that the number of traces is inade-
quate.

Suppose that, after a total of2c jobs have been examined,
the accuracy measure isP2c(sec0) = 33%, P2c(sec1) =
46%, andP2c(sec2) = 21% – which is withinha. Then,2c
is an acceptable sample size.

3.4. Automated model validation procedure

As we have provided solutions to the problems above,
our procedure for automated model validation of a given
modtree is as follows:

Produce a sufficient number of recseqsto accommo-
date the stopping criteria.

Produce the automata for both the model and the
tracesas described in Section 3.2.

Check for trace inclusion of each recseq-automaton
in the modtree-automaton. Assuming that the last loca-
tion of each recseq-automaton is namedlast , this is

done by model checking each modtree-automaton-recseq-
automaton composition with the Computation Tree Logic-
formula E<> recseq.last , expressing that there is an
execution in which the statelast is reachable.

According to our simplified method of automatic mod-
eling in Figure 1, we then should check if there is any ad-
ditional information that we can extract from the system.
If so, this will allow a more detailed model with a better
chance to pass a subsequent model validation test.

4. Case study

We have performed an industrial case study in which we
applied automated modeling to a subset of the motion con-
trol system of a commercial industrial robot.

The > 2500 KLOC object-oriented C-code base of the
robot runs under VxWorks 5.5 on Intel Pentium3 industrial
PC hardware. We study the main computer (MC), running
almost100 tasks with preemptive fixed priority scheduling.
Many of the tasks are event triggered, typically executing
one of several services requested by the triggering task.

Motion control is a critical subsystem of the MC, respon-
sible for generating motor references and brake signals to a
DSP that in turn controls the physical robot. The DSP is-
sues requests to the MC with a fixed rate (f > 200 Hz). It
is critical that the MC replies to each request within a given
time. The motion control subsystem consists of tasksA, B,
andC. TaskA, with low priority, calculates the motion con-
trol commands on a high level of abstraction and submits
results to taskB. TaskB, with medium priority, communi-
cates withC andA, to reduce the abstraction of the motion
control commands fromA. TaskC, with high priority, is re-
sponsible for maintaining the communication with the DSP.

In the experiment, we have focused on tasksA, B andC,
whose implementation consists of more than250 KLOC.
The test case that we analyzed was a complex, fast, mov-
ing pattern, where the robot moves short distances and halts
its movement at designated coordinates. This pattern will
result in high calculation intensity for the recorded tasks.

Probes where introduced to record context switches, ex-
plicit delays, selected variable updates, ipc-send, and ipc-
receive events. Each probe took about0.8µs to execute,
which is quite negligible w.r.t the task execution times,
which are often measured in milliseconds.

4.1. Results

We successfully generated models of the three tasks
based on five recordings. However, during validation us-
ing five other recordings, it was discovered that the two
recorded variables in taskA required a leeway in excess of
10 percent of the task’s Measured Worst Case Execution
Time (MWCET) to pass all tests (see Figure 7). After we

Figure 7. Leeway requirements for the first
probe setting when modeling task A.

Figure 8. h(n, G, V) distribution of all tasks.

had iterated the information extraction two times, we found
a set of variables that when probed gave better data-state in-
formation. This allowed us to pass the test with less than10
percent leeway. In the final information extraction setting,
we recorded two variables in taskA, one in taskB, and one
variable in taskC.

As we analyzed the stopping criteria for the final set of
recordings we found that, even though the completeness
measure was very low (our sample size for validation was
only five recordings), the accuracy measure washa ≥ 10%,
as can be seen in Figure 8. This is probably due to the
length of the recordings: each recording was approximately
22 seconds long and spanned thousands of jobs.

When validated models had been obtained for all three
tasks, we merged the models and co-simulated them to-
gether with a hand made environment model that partly em-
ulated the remaining tasks on the MC. Thus allowing valida-
tion of the collected model from a system perspective. We
performed a large series of simulations, using several dif-
ferent starting conditions. During these, we could observe a
strong similarity in the behavior of the model and the legacy

Table 1. Execution time distributions from
system execution and model simulation.

system. However, as the accumulated model does not repre-
sent the entire system, we cannot perform realistic measures
of response times. We can however analyze the execution
time distributions for the three tasks.

Comparing the execution times measured on the system
with that of simulations (see Table 1), it is evident that there
are deviations from the expected results: Due to limitations
in the handmade environment simulation, the event trig-
gered taskC did not receive input as intended. This insuf-
ficiency in the environment model caused many short jobs
never to be triggered in the simulation. This is seen in the
25th and50th percentile of taskC. With better environment
modeling or with larger scope in the case study, this error
can be remedied.

The final model, including the environment model, oc-
cupied4.0 KLOC without any optimizations, which is less
than1.6% of the size of the implementation.

5. Related work

There are a number of methods available for model gen-
eration. Sifakis et al. [9] proposed a static method that use
tagging of the real-time software with time constraints to fa-
cilitate automated modeling based on the code as input. Yan
et al. [12] presents DiscoTect, a tool that can obtain high-
level architecture models from traces of non-real-time sys-
tem implemented in Java. Moe and Carr [6] present auto-
mated modeling from recordings of RPC-calls in CORBA-
based legacy systems. The product of the method is not
an operational model that can be simulated, but rather a
visualization of occurred events. The tool has reportedly
helped discover and identify a number of bugs in an opera-
tion and maintenance system for cellular networks by Eric-
sson. However, we are not aware of any methods of model
generation that includes a method for automated model val-
idation.

Szemethy and Karsai [10] present a method for translat-
ing their handmade SMOLES models of component based
real-time systems into timed automata as a step in model-
based development. Shu et al. [8] provide an automated
translation from their extended version of UML to timed
automata. Contrary to our work, their work does not con-
sider models with data state, and queries performed on the
model has to be tailor made for the specific system.

6. Conclusions

We have presented a unified process for automatic mod-
eling of legacy real-time software. Based on recordings of
the legacy system, it is possible to automatically produce
and validate probabilistic models, suitable for simulation
based analysis of dynamic system properties, such as tim-
ing and resource usage. The applicability of the process has
been shown in an industrial case study on a state of practice
system. Although the impact of recording was very low, the
quality of the model was high and the model size was small.

The inputs utilized for automated modeling construction
characterizes the properties of the finalized model. Using
only recordings from the system, the direct coupling back
to the code of the implementation is weakened. As a con-
sequence, the model may look radically different than the
implementation, but the behavior will still have a strong cor-
respondence. In this perspective, it may be more attractive
to use the code or the documentation as input – but these
inputs are associated with other drawbacks such as porta-
bility, completeness, and complexity. We are investigating
this in a concurrent research effort.

Future work will address automated monitoring setup,
which is the only part of our proposed process that is not
yet automated.

References

[1] R. Alur and D. L. Dill. A theory of timed automata.Theo-
retical Computer Science, 126(2):183–235, April 1994.

[2] J. Andersson, A. Wall, and C. Norström. Decreasing main-
tenance costs by introducing formal analysis of real-time be-
havior in industrial settings. InProc. of the1st International
Symposium on Leveraging Applications of Formal Methods,
October 2004.

[3] J. Bengtsson, W. O. D. Griffioen, K. J. Kristoffersen, K. G.
Larsen, F. Larsson, P. Pettersson, and W. Yi. Automated
analysis of an audio control protocol using uppaal.Journal
of Logic and Algebraic Programming, 52-53:163–181, July-
August 2002.

[4] J. Huselius and J. Andersson. Model synthesis for real-time
systems. InProc. of the9th European Conference on Soft-
ware Maintenance and Reengineering, pages 52–60, March
2005.

[5] J. Huselius, S. Punnekkat, and H. Hansson. Presenting:
An automated process for model synthesis. MRTC Report
191, Mälardalen University, October 2005. Available at:
www.mrtc.mdh.se.

[6] J. Moe and D. Carr. Using execution trace data to improve
distributed systems.Software - Practice and Experience,
32(9), July 2002.

[7] W. Piegorsch. Sample sizes for improved binomial confi-
dence intervals.Computational Statistics & Data Analysis,
46(2):309–316, June 2004.

[8] G. Shu, C. Li, Q. Wang, and M. Li. Validating objected-
oriented prototype of real-time systems with timed au-
tomata. InProceedings of the13th IEEE International
Workshop on Rapid System Prototyping, pages 99–106, July
2002.

[9] J. Sifakis, S. Tripakis, and S. Yovine. Building models of
real-time systems from application software.Proceedings
of the IEEE, 91(1):100–111, January 2003.

[10] T. Szemethy and G. Karsai. Platform modeling and model
transformations for analysis.Journal of Universal Computer
Science, 10(10):1383–1407, October 2004.

[11] A. Wall. Architectural Modeling and Analysis of Complex
Real-Time Systems. Phd thesis no. 5, M̈alardalen University,
September 2003. Available at: www.mrtc.mdh.se.

[12] H. Yan, D. Garlan, B. Schmerl, J. Aldrich, and R. Kazman.
Discotect: A system for discovering architectures from run-
ning systems. InProceedings of the 2004 International Con-
ference on Software Engineering, May 2004.

