
Static WCET Analysis of Real-Time
Task-Oriented Code in Vehicle Control Systems

Daniel Sehlberg∗, Andreas Ermedahl∗, Jan Gustafsson∗,
Björn Lisper∗, and Steffen Wiegratz\

∗Dept. of Computer Science and Electronics, Mälardalen University, Väster̊as, Sweden
\AbsInt Angewandte Informatik GmbH, Saarbrücken, Germany

Abstract. Methods for Worst-Case Execution Time (WCET) analysis
have been known for some time, and recently commercial tools have
emerged. This technique is gradually being entered into industry to ana-
lyse real production codes. This article presents a case study where the
aiT WCET analysis tool was used to find upper time bounds for task-
oriented vehicular control code. The main purpose was to investigate
the practical difficulties that arise when applying the current WCET
analysis methods to this particular kind of code. In particular, we were
interested in how labor-intense the analysis becomes, measured by the
number of manual annotations necessary for calculating a WCET esti-
mate. We were also interested how much tighter WCET estimates will
become by manually adding extra annotations, and how much additional
work that is needed to give these annotations. We also made some sys-
tematic comparisons between calculated and measured WCET estimates
for the analysed system.

1 Introduction

A Worst-Case Execution Time (WCET) analysis finds an upper bound to the
worst possible execution time of a computer program. Reliable WCET estimates
are a key component when designing and verifying real-time systems, especially
when real-time systems are used to control safety-critical systems like vehicles,
military equipment and industrial power plants. WCET estimates are needed
in hard real-time systems development to perform scheduling and schedulability
analysis, to determine whether performance goals are met for periodic tasks, and
to check that interrupts have sufficiently short reaction times [1].

Any WCET analysis must deal with the fact that a computer program typ-
ically has no fixed execution time. Variations in the execution time occur due
to the characteristics of the software, as well as of the computer upon which
the program is run. Thus, both the properties of the software and the hardware
must be considered in order to understand and predict the WCET of a program.

The traditional way to determine the timing of a program is by measure-
ments, also known as dynamic timing analysis. A wide variety of measurement
tools are employed in industry, including emulators, logic analyzers, oscillo-
scopes, and software profiling tools [2, 3]. This is labor-intensive and error-prone
work. Even worse, it cannot guarantee that the true WCET has been found,
since in general it is not possible to perform exhaustive testing.



Static timing analyses estimate the WCET of a program without actually
running it. The analyses avoid the need to run the program by simultaneously
considering the effects of all possible inputs, including possible system states,
together with the program’s interaction with the hardware. The analyses rely
on mathematical models of the software and hardware involved. Given that the
models are accurate enough, the result is a safe timing estimate that is greater
than or equal to the actual WCET.

Since a few years commercial WCET analysis tools have reached the mar-
ket, including both static tools such as aiT [4] and Bound-T [5], and more
measurement-based tools such as RapiTime [6]. However, practical experience
of WCET analysis in industry has so far been rather limited, see Section 2.

In this case study we report from experiences when using the aiT tool to
analyze code used in vehicles manufactured by Volvo Construction Equipment
(Volvo CE) [7]. The code is for tasks managed by the Rubus Real-Time operating
system [8], which is a commercial implementation of the BASEMENT real-time
system architecture [9]. The article is based on the Master’s thesis by Daniel
Sehlberg [10].

The contributions of this article are:
− we estimate how much manual work is needed to perform a basic WCET

analysis using a state-of-the-art WCET analysis tool,
− we evaluate how to tighten the WCET estimate using additional annotations,

and the amount of effort needed,
− and we make comparisons between calculated and measured WCET estimates.

The rest of this article is organized as follows. In Section 2, we give a brief
introduction to WCET analysis and related work in the area. In Section 3, we
describe the experimental setup: the system where the code is run, and the ana-
lysis tool. Section 4 describes the analyses made, and gives the results. Finally,
in Section 5, we draw some conclusions and give directions for further research.

2 WCET Analysis Overview and Related Work

Static WCET analysis is usually divided into three phases: a flow analysis where
information about the possible program execution paths is derived, a processor
behavior analysis where the execution time for atomic parts of the code (e.g.,
instructions, basic blocks or larger code sections) is decided from a performance
model of the target architecture, and a final estimate calculation phase where
flow and timing information derived in the previous phases are combined to
derive a WCET estimate.

The purpose of the flow analysis phase is to extract the dynamic behaviour
of the program. This includes information on which functions get called, how
many times loops iterate, if there are dependencies between if-statements, etc.
Since the flow analysis does not know the execution path which corresponds to
the longest execution time, the information must be a safe (over)approximation
including all possible program executions. The information can be obtained by
manual annotations (integrated in the programming language [11] or provided
separately [12, 13]), or by automatic flow analysis methods [14–16].



Fig. 1. Motor graders, wheel loaders, excavators and articulated haulers are some of
the products developed by Volvo CE

The purpose of processor behavior analysis is to determine the timing be-
haviour of instructions given the architectural features of the target system.
For modern processors it is especially important to study the effects of vari-
ous performance enhancing features, like caches, branch predictors and pipelines
[17–20].

The purpose of the calculation phase is to calculate the WCET estimate for
a program, combining the flow and timing information derived in the previous
phases. A calculation method frequently used is IPET (Implicit Path Enumera-
tion Technique), using arithmetical constraints to model the program flow and
low-level execution times [12, 21, 16]. IPET calculations normally rely on integer
linear programming to solve the generated constraint system.

Studies of WCET analysis of industrial code are not common. There are
some reports on application of commercial WCET tools to analyze code for
space applications [16, 22, 23], and in avionics industry [24, 25]. The experiences
from some recent case studies are compiled in [26]. One of these case studies
concerns WCET analysis for communication software in cars [27].

An investigation of industrial embedded code has been done by Engblom [28].
He collected statistics of the number of occurrences of certain code features
that may be problematic for a WCET analysis, like recursion, unstructured flow
graphs, function pointers and function pointer calls, data pointers, deeply nested
loops, multiple loop exits, deeply nested decision nests, and non-terminating
loops and functions. In a more recent study [29], industrial code is investigated
with respect to how amenable it is to a syntactical flow analysis, a method
which detects certain loop patterns where iteration bounds can be calculated
immediately from the pattern.

3 Experimental Setup

We now describe the experimental setup: the kind of system being controlled
by the analyzed real-time software, the hardware, the operating system, the
WCET analysis tool, and the emulator that was used for estimating timing
measurements.

3.1 The Volvo CE System
Volvo CE is one of the world’s leading manufacturers of construction equipment.
Their product range encompasses backhoe loaders, wheel loaders, excavators, ar-



ticulated haulers and motor graders. The vehicles are controlled by a distributed,
computerized control system, consisting of a set of networked ECU’s (Electronic
Control Units). The number of ECU’s in the different vehicles varies, but an
articulated hauler contains five: the Cabin, Engine, Instrument, Transmission,
and Vehicle ECU. The ECU’s currently use the Infineon C167CS processor.

The ECU’s are connected with two CAN (Controller Area Network) buses
and one J1587 bus. The CAN buses are the primary buses used for most of
the data exchange, while the slower J1587 bus is mainly used for diagnostic
service tools. The study described here considers 13 hard real-time tasks in the
Transmission ECU for articulated haulers.

3.2 The Rubus Real-Time Operating System

The software for the vehicle systems at Volvo CE uses the Rubus real-time
operating system from Arcticus Systems.

The Rubus OS is task-oriented, and supports green, red, and blue tasks.
Green tasks are interrupt tasks. They have the highest priority in the system
and preempt any other tasks when released. Red tasks are hard real time tasks
triggered by the system clock and scheduled offline. Possible attributes for the
red tasks are release time, period time, deadline, precedence and WCET. Blue
tasks are event-triggered soft tasks which are scheduled online and only execute
when there are no red or green tasks running.

Rubus contains a mechanism to measure the execution time of tasks: some
timing code is then inlined with the task. This mechanism can be used to do
high-water-marking of the execution time, which then bounds the WCET from
below. However, since the measurements are done in software, there is a probe
effect, which is hard to compensate for in a precise way.

Since red tasks needs WCET estimates as attributes, the codes for such tasks
are prime targets to analyze with a static WCET analysis tool. The current
common practice is to estimate the WCET by measurements, typically through
the Rubus task timing facility, and then add a safety margin, since the measured
WCET value may be underestimated. The inherent problem with this approach
is that the correct size of such a margin is unknown.

If a static WCET analysis tool is used, which is based on a correct timing
model, and if correct annotations are given, then the WCET estimate obtained
will be safe, which means the static schedule generated by Rubus also will be
safe. Since no safety margins then have to be added, the WCET estimate will
also often be tighter. Thus, static WCET analysis fits very well in a task-oriented
development model like the one supported by the Rubus OS and its supporting
development tools.

3.3 The Infineon C167CS Processor

The software studied in this article is executed on Infineon C167CS [30], which is
a 16-bit, single-chip microcontroller with a four stage pipeline, but no cache. The
C167CS incorporates 32 KBytes of on-chip mask-programmable ROM. 3 KBytes
of on-chip internal RAM and 8 KBytes of on-chip extension RAM are provided



to store user data or code. It is also possible to use off-chip memory of up to
16 Megabytes. The different memory types have have different access times;
this may affect the WCET calculations. The memory space of the C167CS is
configured as a von Neumann architecture, which means that code memory, data
memory, registers and I/O ports are organized within the same linear address
space. The processor has a frequency of 33 MHz.

3.4 The aiT WCET Analysis Tool

The aiT tool is a commercial WCET analysis tool from AbsInt GmbH [4]. The
aiT tool analyses executable binaries, and it supports a number of target archi-
tectures including the C167CS. aiT performs the following steps in its analysis
(see [31], Chapter 6):
− a reconstruction of the control flow graph from the executable code,
− an analysis to bound loop iterations, based on a combination of an interval-

based abstract interpretation and pattern-matching tuned to the compiler
that generated the analyzed code,

− a value analysis to determine the range of values in registers,
− a cache analysis that classifies accesses to main memory w.r.t. hits and misses,

if the processor has a cache,
− a pipeline analysis, where a model of the pipeline behavior is used to determine

the execution time of basic blocks, and finally
− a calculation where an IPET calculation is made to determine the WCET.
In essence, the aiT WCET analysis conforms to the general scheme presented in
Section 2. Several of the analyses in the chain are based on abstract interpreta-
tion [32], such as the value analysis and the cache analysis [21].

The aiT tool analyses executables stored in ELF format. This format contains
information about the code, like symbol tables, which is used by aiT. The infor-
mation present in the ELF file and the executable itself is typically not sufficient
to yield a good WCET bound for the analyzed code. In particular, information
about program flow, such as bounds to loop iteration counts not caught by the
loop bounds analysis, and knowledge of infeasible paths, has to be provided by
the user. Therefore, aiT supports a set of user annotations to provide external
information to the analysis [13]. Some of the more important annotations con-
strain the possible program flows: loop bounds, maximal recursion depth, dead
code, (static) outcome of conditions, and possible values of registers. In addi-
tion, there are other types annotations, e.g., to constrain the address range of
memory accesses (allowing aiT to find better bounds for access times), and to
provide hardware-related information such as clock rate and address mapping
to different kinds of memories. There are also annotations for controlling the
context-sensitivity of the analysis: this concerns the interprocedural part of the
analysis, and controls for which contexts a function will be analyzed separately
and for which contexts a single, joint analysis is to be made. Thus, these anno-
tations can be used to control the tradeoff between analysis time and precision.

Since aiT analyzes the binary code, the annotations have to be given on
this level, which is cumbersome. For some compilers, aiT can use symbol tables



to map annotations given for the source code to the binary level: however, the
user must be aware that the control flow of the code might be different for the
compiled code, which means that annotations valid for the source code might
not be valid for the binary code. In our study, annotations were made on the
binary level.

3.5 The Trace32Fire Emulator
We used the Trace32Fire emulator to estimate the measured WCET, see Sec-
tion 4.4. This is an emulator from Lauterbach Datentechnik GmbH [33]. It has
full support for the whole C166 family, which includes the C167CS. The emulator
works just like the real CPU, but has the ability to log every instruction along
with register values and execution time. The trace can be folded or unfolded into
three different levels. The highest level displays only the source code while the
third level displays source code, assembler instructions and register values.

4 Analyses and Results

In this chapter we present and analyse the results from our WCET analyses
and measurements. Section 4.1 describes the results from an initial and very
simplified analysis made on 24 tasks. Section 4.2 gives some properties of 13
tasks selected for a closer study. Section 4.3 describes the user input needed
in the form of annotations for these 13 tasks, and the relation between the
number of annotations and the corresponding WCET estimate. In Section 4.4
we compare the initial aiT result, using a minimal number of annotations to
obtain a WCET estimate at all, the tightened aiT result, obtained by adding
annotations constraining the program flow harder, the measured result, and the
current WCET estimate set in Rubus for the selected tasks. All aiT analyses were
done with maximal context-sensitivity, in order to obtain maximal precision
in this respect. In Section 4.5, finally, we discuss the labor effort involved for
performing the different analyses.

4.1 Minimum Effort Analysis

We first tested if it was possible to derive WCET estimates with a minimal
amount of effort. This was made by running aiT on an initial selection of 24 tasks.
For each task a project file was created specifying the hardware configuration
and the start address of the task. Except these analysis tool inputs, no additional
annotations were given. The setup of the project files took about two hours, and
to run the analyses on an AMD Athlon XP1900+ (1.61 GHz) with 512 Mb of
RAM took in total about 70 minutes.

For seven of the tasks aiT could not derive any WCET estimate, mainly due
to loops which could not be bounded. (Without loop bounds, any instruction
occuring in a loop might be taken an infinite number of times, leading to an
unbounded WCET estimate).

For the remaining 17 tasks aiT was able to derive a WCET estimate. When
comparing these calculated WCET estimates with the WCET parameters set



Table 1. The 13 tasks selected for more detailed analyses.

Task Source Lines Nodes in Depth of
code (kb) of code call graph call graph

1 3.6 55 1 1

2 4.5 56 1 1

3 4.7 58 3 2

4 5.2 72 1 1

5 6.3 86 2 2

6 4.9 43 6 3

7 9.3 123 5 3

8 8.2 119 5 3

9 5.5 49 5 3

10 10.9 195 3 3

11 8.8 188 5 3

12 40.7 707 20 5

13 565.0 12765 115 8

using Rubus timing mechanism, we got an average time reduction of 59%1.
Thus it is possible, with a very limited effort, to use aiT to calculate WCET
estimates for many tasks in the system, and the calculated values are tighter
than the ones derived from measurements.

4.2 Tasks Selected for More Detailed Analyses

As mentioned in Section 4, we selected 13 red Rubus tasks, in the Transmission
ECU for articulated haulers, for a closer study (including some, but not all, of
the 24 tasks used in the initial experiment, as described in Section 4.1). Table 1
shows a number of complexity measures for the 13 selected tasks. The ’Lines of
code’ column gives the number of C-code rows with comments and blank rows
removed. The column ’Nodes in call graph’ includes both functions and loops
(aiT treats loops as function calls). Tasks 1 – 11 are quite small, whereas task
12 and especially task 13 are substantially larger.

The source code for the tasks is written in C. All tasks have a simple code
structure, with almost exclusively if-statements, just a few loops, one nested loop,
no recursion, and no dynamic calls or memory allocations. Switch statements are
common. The larger tasks contain a large number of function calls, and some
functions are used many times in many different contexts.

4.3 Annotations and WCET Estimates

We first investigated the case where only a minimal number of flow constraints,
in order to obtain a WCET estimate at all, was given. This means to bound the

1 It was not investigated in detail why the calculated WCET estimates got smaller
than the Rubus values. Probable causes include measurement probe effects and too
large safety margins (see Section 3.2) and that some measurements were made using
an old CPU version (see Section 4.4).



Table 2. The effect of extra annotations.

Task Loops Necessary WCET Extra WCET Reduction
annotations (aiT1) annotations (aiT2) (%)

1 0 0 5697 2 4788 16

2 0 0 7516 1 5879 22

3 0 0 13516 1 12122 10

4 0 0 19304 3 13394 31

5 0 0 25243 6 22364 11

6 1 1 28637 2 27243 5

7 1 1 34546 6 29061 16

8 0 0 39425 5 30455 23

9 0 0 41940 4 36000 14

10 0 0 73576 8 55091 25

11 0 0 78758 4 70273 11

12 0 0 199612 18 143606 28

13 18 11 1827000 103 1447000 21

number of iterations for all loops in the code, but not more. Only three tasks
contained loops. aiT managed to find some loop bounds in one task, but the other
loop bounds had to be given manually. To figure out bounds for these loops was
not hard. Columns three and four, respectively, in Table 2, show the number of
given annotations and the corresponding aiT WCET estimate in nanoseconds.

Next, we investigated if the WCET estimate could be made tighter by re-
ducing the set of possible execution paths. The studied code contains quite a
few if-statements where the conditions are or may be mutually exclusive, as
exemplified by the following artificial code snippet:

if(x == 0) y = 1;
if(x == 1) y = 0;

This kind of code gives rise to infeasible paths, i.e., paths which are executable
according to the control-flow graph structure, but not when considering the
semantics of the program and possible input data values. In the example, both
assignments cannot be executed in the same path. The current version of aiT
does not detect this, and will consider a path executing both the assignments
when calculating the WCET estimate.

Thus, we decided to investigate the effect of eliminating such infeasible paths.
After analysing the code, we were able to add a number of manual annotations
that removed many infeasible paths, and reduced the WCET estimate. Columns
six and seven in Table 2 show the effect on the WCET estimates. We obtain
reductions in the range 5 - 31 %. The column ’Extra annotations’ shows the
number of annotations used to exclude infeasible paths from the analysis.

The time used by aiT to analyze the tasks was between 2 and 6 minutes for
all but the largest task, for which the analysis times varied between 15 and 100
minutes depending on which annotations that were used.



Fig. 2. WCET values for the first 11 tasks.

4.4 WCET Comparisons

We also compared the statically estimated WCET values with measurements.
We decided not to use the Rubus timing mechanism for this, partly due to the
inexactness of this mechanism, but mostly because it is hard to have control
over the actually taken path when running on the real hardware, where the
possibilities for monitoring are limited. Therefore, it is hard to know that a
measured value actually corresponds to the longest path, and thus is the WCET.

Instead, we decided to use the Trace32Fire emulator, see Section 3.5, for the
measurements. This emulator is believed to be quite cycle accurate. In order to
obtain some evidence for this, we compared timing values from the emulator
with measured values on the real hardware from the Rubus timing mechanism.
They showed consistently that the overhead from the Rubus timing mechanism is
around 3.5 microseconds, which strengthens our belief that the emulator indeed
has a quite accurate timing model for the Infineon C167CS.

The real advantage of using the emulator is that it gives full control over the
execution, as well as full monitoring capability. Thus, we could, for all tasks,
force the emulator to execute the same path that aiT considered would yield the
WCET path.

The results are illustrated in Figures 2, 3, and 4, and the data and some
interesting ratios are tabulated in Table 3. Since task 12 and 13 have WCET’s
of different magnitudes than the others, Fig. 2 shows only the figures for the
first 11 tasks, Fig. 3 for task 1 – 12, and Fig. 4 for all 13 tasks. For each task, we
compare four values: the Rubus WCET estimate used in the current system, as
given from the Rubus timing mechanism, with an added safety margin (Rub),
the aiT estimate with a minimal number of annotations (aiT1), the aiT estimate
with infeasible path-reducing annotations (aiT2), and times measured with the
emulator, with the same execution path as aiT2 (M).



Fig. 3. WCET values for the first 12 tasks.

Fig. 4. All 13 tasks.

We believe M, in most cases, to be an overestimation of the true WCET, for
the following reason: since aiT may overestimate the set of possible execution
paths, which may happen if the program-flow constraining annotations given are
not tight, there is a chance that the path chosen in aiT2 is an infeasible path.
This path, used in the emulator to measure M, would then yield an overesti-
mation. This is because in our measurements, the emulator was used to force
the evaluation to follow the path chosen by aiT even if that path in reality was
infeasible.

However, M may in some cases be an underestimation: even if aiT produces
safe estimates and the emulator has a correct timing model, it is still not certain
that the measured time for this path overestimates the WCET. It might be that
the processor behavior analysis in aiT made a large overestimation for precisely
this path, which implies that the execution time for this path actually is an
underestimation to the true WCET. However, for a relatively simple processor



such as C167CS, there is little reason to believe that the processor behavior
analysis of aiT gives dramatically different precision for different paths. Since
we also believe the emulator to have a quite precise timing, we believe that M
does not in general underestimate the WCET by more than a small fraction.

The graphs show that, for all tasks, both aiT1 and aiT2 yield WCET esti-
mates which are larger than the measured value M. The aiT2 estimate consis-
tently improves on the aiT1 estimate, with improvements in the range 5 – 31%.
The aiT2 estimate in turn overestimates the measured value M, with overesti-
mations in the range 4 – 33%. As argued above, M probably overapproximates
the real WCET in most cases: for those cases, this is a lower bound to the real
overapproximation.

For all tasks but one, the currently set WCET values in Rubus are larger
than the both the statically derived and the measured WCET estimates. These
values were set using the measurement facilities of Rubus plus adding a safety
margin (see Section 3.2), which explains why they are larger. Sometimes they
are much larger than the measured value, up to 624%. One reason for this is
that some, but not all, of the Rubus values were derived using measurements
from an old, slower version of the CPU. Unfortunately, Volvo does not have any
documentation of which tasks have been remeasured since the CPU upgrade.
Nevertheless, the currently set WCET values are substantially larger (at least
38%) than the aiT2 estimate for these tasks, so there should be quite some room
to set tighter WCET values for the tasks in Rubus based on the aiT2 estimates.
This would leave more room for other activities in the system.

For task 13, the WCET value set in Rubus is lower than both the aiT esti-
mates and the measured value! However, it is not totally clear that this under-
shoots the real WCET, since both the measured and aiT estimates might have
been obtained for a infeasible path. A closer examination of the code for the task
would be required to determine whether this is the case or not. Nevertherless,
the static analysis has been helpful here to spot a possible problem with the
current system setup.

4.5 Labor Efforts

It took the first author, who did the analyses as part of his M.Sc. project, about
one week to become sufficently acquainted with aiT to be able to give non-trivial
annotations. For the studied 13 tasks, it was then a matter of hours to provide
the minimal annotations that would yield a WCET estimate at all: however, this
estimate was quite inexact for most tasks.

For adding the extra annotations, the required labor varied quite a lot. The
smaller tasks were annotated in about an hour each, but the two largest tasks
took together around seven weeks. This also includes the work to find the proper
restrictions on input values. Since these restrictions can affect when contradicting
conditions give rise to infeasible paths, it is hard to split the time between the
work needed to restrict input values and find infeasible path annotations. The
annotation language of aiT currently does not have any good means to specify
that the execution of two instructions is mutually exclusive. Thus, such infeasible



Table 3. Data derived from Rubus, aiT and measurements.

Task Rub aiT1 aiT2 M Rub
aiT2

aiT1
aiT2

M
aiT2

1 30000 5697 4788 4138 6.27 1.19 0.86

2 30000 7516 5879 5340 5.10 1.28 0.91

3 50000 13516 12122 10840 4.12 1.11 0.89

4 60000 19304 13394 11240 4.48 1.44 0.84

5 50000 25243 22364 21560 2.24 1.13 0.96

6 40000 28637 27243 23480 1.47 1.05 0.86

7 40000 34546 29061 25400 1.38 1.19 0.87

8 50000 39425 30455 26235 1.64 1.29 0.86

9 60000 41940 36000 28880 1.67 1.17 0.80

10 80000 73576 55091 49335 1.45 1.34 0.90

11 100000 78758 70273 55418 1.42 1.12 0.79

12 430000 199612 143606 124800 2.99 1.39 0.87

13 800000 1827000 1447000 1090000 0.55 1.26 0.75

AVG 140000 184170 145940 113590 2.68 1.23 0.86

MIN 30000 5697 4788 4138 0.55 1.05 0.75

MAX 800000 1827000 1447000 1090000 6.27 1.44 0.96

path information had to be expressed by condition annotations explicitly stating
the outcome of certain branches as taken or not taken. This added to the labor
time.

5 Conclusions and Future Work

A number of conclusions can be drawn from the study. Clearly, static WCET
analysis tools seem useful for the analysis of task-oriented real-time code like
the one studied here, and they fit well into a tool chain like Rubus where the
WCET’s of tasks are explicit parameters. This kind of hard real-time code often
has a fairly simple control structure, with few loops, no recursion, and few if any
dynamic features. For such code, it is easy to provide the minimal information
needed to get a WCET analysis tool to produce a WCET estimate. For the
studied code, we have shown that it is possible with a very small effort to get
a safe WCET value for the tasks, and that already this basic WCET in almost
all cases is tighter than currently used WCET estimates based on measurements
with a safety margin added.

However, if tighter WCET estimates are desired, then substantially more
work may be needed. The code under study happened to be written in a style
with many if-statements with more or less exclusive conditions. We don’t know
how common such code is, but it gives rise to many infeasible paths. A tight
WCET estimate requires that as many of these paths as possible are pruned
away in the analysis, even if the mutual exclusion occurs between instructions in
different functions. To do this conveniently by hand requires good support from
the annotation language, and the aiT annotation language currently does not
provide the proper constructs for expressing mutual exclusiveness of instruction



execution. However, such constraints are readily expressed as linear constraints
on execution counters, and for instance the flow fact format [12] provides them.
Another intriguing possibility is to derive these constraints automatically: initial
experiments in this direction using our prototype tool SWEET [34] have shown
promising results [35].

We can conclude that there are cases where the use of a tool like aiT can
improve the utilization of the system as well as detect potential sources of timing
errors. For the system under study, this is clearly the case, since the WCET
estimates obtained by aiT are substantially more precise than the current WCET
parameters set in Rubus.

The use of a WCET tool also gives a possibility to remove the use of high-
water measurements. This may reduce system load, especially in systems with
many small tasks.

Future work includes tests to see if the infeasible paths found in the Volvo CE
code can be found automatically using the SWEET tool, and to further develop
existing techniques to identify infeasible paths in real-time code.

Acknowledgements

This work was performed within the ASTEC competence center2 under support
by VINNOVA3, as well as by the KK-foundation4 under grant 2005/0271. Travel
support has been provided by the ARTIST2 European Network of Excellence.
We want to thank AbsInt GmbH [4] for giving us access to the aiT tool, as well
as Volvo Construction Equipment [7] for giving us access to production code to
analyze.

References

1. Ganssle, J.: Really real-time systems. In: Proc. of the Embedded Systems Confer-
ence, Silicon Valley 2006 (ESCSV 2006). (2006)

2. Ive, A.: Runtime Performance Evaluation of Embedded Software. Presented at
the 8th Nordic Workshop on Programming Enviroment Research (1998)

3. Stewart, D.B.: Measuring execution time and real-time performance. In: Proc. of
the Embedded Systems Conference, San Francisco 2004 (ESCSF 2004). (2004)

4. AbsInt: aiT tool homepage (2006) www.absint.com/ait.
5. Tidorum: Bound-T tool homepage (2006) www.tidorum.fi/bound-t/.
6. Rapita: RapiTime WCET tool homepage (2006) www.rapitasystems.com.
7. Volvo: Volvo CE (construction equipment) homepage (2006)

www.volvo.com/constructionequipment.
8. Arcticus: Rubus homepage (2006)

www.arcticus-systems.com/productsrubusos.php.
9. Hansson, H., Lawson, H., Bridal, O., Eriksson, C., Larsson, S., Lönn, H.,

Strömberg, M.: BASEMENT: an architecture and methodology for distributed
automotive real-time systems. IEEE Trans. Comput. 46 (1997) 1016–1027

2 www.astec.uu.se
3 www.vinnova.se
4 www.kks.se



10. Sehlberg, D.: Static WCET analysis of task-oriented code for construction vehicles.
Master’s thesis, Mälardalen University, Väster̊as, Sweden (2005)

11. Kirner, R., Puschner, P.: Transformation of path information for WCET analysis
during compilation. In: Proc. 13th Euromicro Conference of Real-Time Systems,
(ECRTS’01), Delft, IEEE Computer Society Press (2001) 29–36

12. Ermedahl, A.: A Modular Tool Architecture for Worst-Case Execution Time Anal-
ysis. PhD thesis, Uppsala University, Dept. of Information Technology, Uppsala
University, Sweden (2003)

13. Ferdinand, C., Heckmann, R., Theiling, H.: Convenient user annotations for a
WCET tool. In: Proc. 3rd International Workshop on Worst-Case Execution Time
Analysis, (WCET’2003). (2003)

14. Gustafsson, J.: Analyzing Execution-Time of Object-Oriented Programs Using
Abstract Interpretation. PhD thesis, Dept. of Information Technology, Uppsala
University, Sweden (2000)

15. Healy, C., Sjödin, M., Rustagi, V., Whalley, D.: Bounding Loop Iterations for
Timing Analysis. In: Proc. 4th IEEE Real-Time Technology and Applications
Symposium (RTAS’98). (1998)

16. Holsti, N., L̊angbacka, T., Saarinen, S.: Worst-case execution-time analysis for
digital signal processors. In: Proc. EUSIPCO 2000 Conference (X European Signal
Processing Conference). (2000)

17. Heckmann, R., Langenbach, M., Thesing, S., Wilhelm, R.: The influence of proces-
sor architecture on the design and the results of WCET tools. IEEE Proceedings
on Real-Time Systems (2003)

18. Engblom, J.: Analysis of the execution time unpredictability caused by dynamic
branch prediction. In: Proc. 8th IEEE Real-Time/Embedded Technology and Ap-
plications Symposium (RTAS’03). (2003)

19. Healy, C., Arnold, R., Müller, F., Whalley, D., Harmon, M.: Bounding pipeline
and instruction cache performance. IEEE Transactions on Computers 48 (1999)

20. Engblom, J.: Processor Pipelines and Static Worst-Case Execution Time Analy-
sis. PhD thesis, Uppsala University, Dept. of Information Technology, Box 337,
Uppsala, Sweden (2002) ISBN 91-554-5228-0.

21. Ferdinand, C., Martin, F., Wilhelm, R.: Applying compiler techniques to cache
behavior prediction. In: Proc. ACM SIGPLAN Workshop on Languages, Compilers
and Tools for Real-Time Systems (LCT-RTS’97). (1997)

22. Holsti, N., L̊angbacka, T., Saarinen, S.: Using a worst-case execution-time tool for
real-time verification of the DEBIE software. In: Proc. DASIA 2000 Conference
(Data Systems in Aerospace 2000, ESA SP-457). (2000)

23. Rodriguez, M., Silva, N., Esteves, J., Henriques, L., Costa, D., Holsti, N., Hjort-
naes, K.: Challenges in calculating the WCET of a complex on-board satellite
application. In: Proc. 3rd International Workshop on Worst-Case Execution Time
Analysis, (WCET’2003). (2003)

24. Ferdinand, C., Heckmann, R., Langenbach, M., Martin, F., Schmidt, M., Theiling,
H., Thesing, S., Wilhelm, R.: Reliable and precise WCET determination for a
real-life processor. In: Proc. 1st International Workshop on Embedded Systems,
(EMSOFT2000), LNCS 2211. (2001)

25. Thesing, S., Souyris, J., Heckmann, R., Randimbivololona, F., Langenbach, M.,
Wilhelm, R., Ferdinand, C.: An abstract interpretation-based timing validation of
hard real-time avionics software. In: Proc. of the IEEE International Conference
on Dependable Systems and Networks (DSN-2003). (2003)



26. Ermedahl, A., Gustafsson, J., Lisper, B.: Experiences from industrial WCET anal-
ysis case studies. In: Proc. 5th International Workshop on Worst-Case Execution
Time Analysis, (WCET’2005). (2005) 19–22

27. Byhlin, S., Ermedahl, A., Gustafsson, J., Lisper, B.: Applying static WCET anal-
ysis to automotive communication software. In: Proc. 17th Euromicro Conference
of Real-Time Systems, (ECRTS’05). (2005) 249–258

28. Engblom, J.: Static Properties of Embedded Real-Time Programs, and Their
Implications for Worst-Case Execution Time Analysis. In: Proc. 5th IEEE Real-
Time Technology and Applications Symposium (RTAS’99), IEEE Computer Soci-
ety Press (1999)

29. Sandberg, C.: Inspection of industrial code for syntactical loop analysis. In:
Proc. 4th International Workshop on Worst-Case Execution Time Analysis,
(WCET’2004). (2004)

30. Infineon: Infineon Systems homepage (2006) www.infineon.com.
31. Thesing, S.: Safe and Precise WCET Determination by Abstract Interpretation of

Pipeline Models. PhD thesis, Saarland University (2004)
32. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In: Proc. 4th

ACM Symposium on Principles of Programming Languages, Los Angeles (1977)
238–252

33. Lauterbach: Lauterbach datentechnik GmbH homepage (2006)
www.lauterbach.com.

34. Mälardalen University: WCET project homepage (2006)
www.mrtc.mdh.se/projects/wcet.

35. Gustafsson, J., Ermedahl, A., Lisper, B.: Algorithms for infeasible path calculation.
In Mueller, F., ed.: Proc. 6th International Workshop on Worst-Case Execution
Time Analysis, (WCET’2006), Dresden, Germany (2006)


