
www.elsevier.com/locate/infsof

Information and Software Technology 49 (2007) 419–444
Software systems in-house integration: Architecture, process
practices, and strategy selection

Rikard Land *, Ivica Crnkovic

Department of Computer Science and Electronics, Mälardalen University, Box 883, SE-721 23 Vasteras, Sweden

Received 5 January 2006; received in revised form 15 June 2006; accepted 5 July 2006
Available online 22 August 2006
Abstract

As organizations merge or collaborate closely, an important question is how their existing software assets should be handled. If these
previously separate organizations are in the same business domain – they might even have been competitors – it is likely that they have
developed similar software systems. To rationalize, these existing software assets should be integrated, in the sense that similar features
should be implemented only once. The integration can be achieved in different ways. Success of it involves properly managing challenges
such as making as well founded decisions as early as possible, maintaining commitment within the organization, managing the complex-
ities of distributed teams, and synchronizing the integration efforts with concurrent evolution of the existing systems.

This paper presents a multiple case study involving nine cases of such in-house integration processes. Based both on positive and neg-
ative experiences of the cases, we pinpoint crucial issues to consider early in the process, and suggest a number of process practices.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Software integration; Software merge; Strategic decisions; Architectural compatibility
1. Introduction

When organizations merge, or collaborate very closely,
they often bring a legacy of in-house developed software sys-
tems, systems that address similar problems within the same
business. As these systems address similar problems in the
same domain, there is usually some overlap in functionality
and purpose. Independent of whether the software systems
are products or are mainly used in-house, it makes little eco-
nomic sense to evolve and maintain systems separately. A
single implementation combining the functionality of the
existing systems would improve the situation both from an
economical and maintenance point of view, and also from
the point of view of users, marketing, and customers. This
situation may also occur as systems with initially different
purposes are developed in-house (typically by different parts
of the organization), and evolved and extended until they
0950-5849/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2006.07.002

* Corresponding author. Tel.: +46 21 107035; fax: +46 21 103110.
E-mail addresses: rikard.land@mdh.se (R. Land), ivica.crnkovic@

mdh.se (I. Crnkovic).
partially implement the same basic functionality; the global
optimum for the organization as a whole would be to inte-
grate these systems into one, so that there is a single imple-
mentation of the same functionality.

For an organization that has identified a functional
overlap and a need for integration, two main questions
appear: what will be the final result, and how it can be
achieved? That is, how do we devise a vision for a future
integrated system, and how do we utilize our existing sys-
tems optimally in order to reach this vision within reason-
able time, using reasonable resources?

The main difficulty in this situation is not to invent or
develop new software, but to take advantage of the existing
proven implementations as well as of the collected experi-
ence from developing, evolving, and using the existing sys-
tems. We have labeled this general approach in-house

integration, which might be solved in a number of fairly dif-
ferent ways, from retiring existing systems (but reuse expe-
rience), through integration of components of the original
systems to performing a very tight merge of pieces of code.
As the initial decisions will have far-reaching consequences,

mailto:rikard.land@mdh.se
mailto:ivica.crnkovic@ mdh.se
mailto:ivica.crnkovic@ mdh.se


420 R. Land, I. Crnkovic / Information and Software Technology 49 (2007) 419–444
it is essential to analyze important factors in enough depth
prior to making the decision. In this paper we describe a
number of such factors we have observed and derived from
the case studies, and we also present some observations on
the consequences of ill-founded decisions.

1.1. Research relevance and scope

There is no established theory or methods that specifi-
cally address this situation. As there is arguably much
experience in industry, research on this should start by col-
lecting this experience. Being the first study of its kind, this
study is qualitative in nature, and our research method
(further described in Section 2) has been the multiple case
study. The industrial cases all have all a considerable histo-
ry of usage and evolution (often 20 years or more). They
range from moderately small (a few developers) to large
(hundreds of developers). The relevance of the cases for
the research problem is thus high, and the number of cases
ensures some level of external validity.

We have deliberately chosen to not study enterprise
information systems, because there are research and text-
books available on Enterprise Application Integration
(EAI) already, and there exist commercial solutions for
this as well as a large number of consulting companies
[10,35,39,63,79]. We have instead searched for cases in
other domains, and studied how they have carried out
their software systems integration, and how well they
consider themselves to have succeeded. The domains of
the systems include safety-critical systems (i.e. including
hardware), physics simulations, software platforms,
human–machine interfaces, and data management sys-
tems. These domains are not so suited for EAI intercon-
nectivity approaches, which would imply extra overhead
of adapters, wrappers, etc. Also, one of the main goals
of in-house integration – to reduce the maintenance costs
– would not be met if the amount of source code is
extended rather than reduced.

1.2. The big picture

The total process is typically divided into a vision process

and an implementation process. Even if this is not always
done explicitly, there is a clear difference between the pur-
pose of each, the participants of each, and the activities
belonging to each [58]. The starting point is a decision that
integration is needed or desired, and the outcome of the
vision process is a high-level description what the future
system will look like, both in terms of features (require-
ments) and design (architectural description). It would also
include an implementation plan, including resources, sche-
dule, deliverables, etc. The implementation process then
consists of executing the plan. Different stakeholders are
involved at different stages; during the strategic vision
process, managers, and architects are heavily involved,
while developers become involved mainly during
implementation.
These processes could be as sequential – first define a
vision, then implement it. If the decision is drastic, involv-
ing, e.g., discontinuing one system immediately, there
would typically be no need to revisit it after implementa-
tion has made some progress. Otherwise, the vision will
likely be revisited and refined as implementation proceeds,
meaning that these two processes will be carried out some-
what iteratively, each affecting the other. This is similar to
many other software process models: for new development
there are sequential processes as well as iterative processes.
Which is most feasible in any given case depends on, e.g.,
how often the requirements might change, how well the
developing organization knows the domain, and the type
of system. As we are here dealing with existing systems, it
becomes even more important to make an explicit decision
on what is wanted before starting implementing it.

The vision process will end in a high-level description of
what the new system should look like. There are of course
many possible designs of the system, but at the highest level
there seem to be a few, easily understood strategies, charac-
terized by the parts of the existing systems that are reused.
It is possible to formulate four fundamental strategies: No
Integration, Start from Scratch, Choose One, and Merge.
Their primary use is as a vehicle for discussion, and we
can expect that in most cases, the solution chosen could
be characterized as somewhere in between. By formulating
the strategies in their pure form, any particular solution in
reality can be characterized in terms of these extreme ends
of the solution space.

• Start from Scratch: Start the development of a new sys-
tem, aimed to replace the existing systems, and plan for
discontinuing the existing systems. In most cases (parts
of) requirements and architecture of the existing systems
will be carried over to the new system. This strategy can
be implemented by acquiring a commercial or open
source solution, or building the new system in-house.

• Choose One: Evaluate the existing systems and choose the
one that is most satisfactory, officially discontinue devel-
opment of all others and continue development of the
selected system. It may be necessary to evolve the chosen
system before it can fully replace the other systems.

• Merge: Take parts from the existing systems and integrate
them to form a new system that has the strengths of both
and the weaknesses of none. This is, of course, an idealized
strategy and as it will turn out the most complicated and
broad strategy of the model. To aid the discussion of the
paper, we present two types of Merge, labeled Rapid

and Evolutionary, only distinguished by their associated
time scale. By introducing them, some events in the cases
and some conclusions are more easily explained, although
there is no strict borderline between them.
– Rapid Merge: With ‘‘rapid’’ we mean that the existing

components can be rearranged with little effort, i.e.
basically without modification or development of
adapters. How to evaluate and select components is
the responsibility of the architect.



R. Land, I. Crnkovic / Information and Software Technology 49 (2007) 419–444 421
– Evolutionary Merge: Continue development of all
existing systems towards a state in which architecture
and most components are identical or compatible, in
order to allow for Rapid Merge sometime in the
future.

• No Integration: This strategy is mentioned solely to be
complete. No integration means that the existing soft-
ware systems are controlled independently, which
clearly will not result in an integrated or common
system.

Some notes on terminology before continuing, to distin-
guish between our uses of integration and merge: The term
in-house integration is used to denote the general approach
of providing a single implementation, reusing whatever
could be reused. Integration may or may not be implement-
ed by the Merge strategy. With a new generation of a sys-
tem we intend a system developed from scratch, i.e.
without reusing code. We are not making any fine distinc-
tion between the terms maintenance and evolution. The
term architectural compatibility is used to describe the rela-
tionship between two systems (how ‘‘similar’’ are they, in
some sense), not between two components (which would
be how ‘‘composable’’ are they [67]).

1.3. The present paper

In this paper we focus on the vision process. To do this
we have two types of data from the cases: first, direct obser-
vations from the vision process, and second, observations
on the implementation process (and the outcome, although
in some cases integration is still in progress). This second
type of data is interesting as narratives in themselves, but
is also used to suggest elements that should be included
in the vision process.

Details regarding the research design are found in Sec-
tion 2, including brief narrative descriptions of the events
in the cases. Section 3 contains direct observations from
the vision process, which addresses the first goal: we report
process practices found in the cases and introduce the cri-
teria for selecting a strategy. These criteria are elaborated
in subsequent sections, thus addressing the second goal:
architectural compatibility in Section 4, retireability in Sec-
tion 5, implementation process in Section 6, and resources,
synchronization, and backward compatibility in Section 7.
Section 8 re-analyzes the cases based on the criteria pre-
sented, and synthesizes these criteria into a suggested
high-level check-list procedure. Section 9 relates our work
to existing publications, and Section 10 summarizes and
concludes the paper.

Parts of the present paper have previously been pub-
lished at various conferences [48,50,52–55,58]. The present
paper relates the findings previously reported separately to
each other, performs a deeper analysis and provides an
overall list of important factors, suggested solutions and
practices.
2. Research method

The multiple case study [95] consists of nine cases from
six organizations. The cases were found through personal
contacts, which led to further contacts, etc. until we had
studied the nine cases and proceeded to analysis. Our main
data source has been interviews, although in some cases the
interviewees offered documents of different kinds (system
documentation as well as project documentation), which
in our opinion was mostly useful only to confirm the inter-
viewees’ narratives. In one case one of the authors (R.L.)
participated as an active member during two periods (some
3–4 months on each occasion, with 2 years in between).

The desired interviewees were persons who:

1. Had been in the organization and participated in the
integration project long enough to know the history
first-hand.

2. Had some sort of leading position, with first-hand
insight into on what grounds decisions were made.

3. Is a technician, and had knowledge about the technical
solutions considered and chosen.

All interviewees fulfilled either criteria 1 and 2 (project
leaders with less insight into technology), or 1 and 3 (tech-
nical experts with less insight into the decisions made). In
all cases, people and documentation complemented each
other so that all three criteria are satisfactory fulfilled.
There are guidelines on how to carry out interviews in
order to, e.g., not asking leading questions [77], which we
have strived to follow. The questions were open-ended
[82], focused around architecture and processes, and the
copied out interview notes were sent back to the intervie-
wees for feedback and approval. The interviewees were
asked to describe their experiences in their own words, as
opposed to answering questions; however we used a set
of open-ended questions, to ensure we got information
about the history of the systems, problems, solutions, and
more. The questions are reprinted in Appendix. Due to
space limitations the answers are not reprinted, but can
be found in a technical report together with further details
regarding the research design [57]. Our analysis protocol
was as follows: the responses were read through many
times, each time with a particular question in mind (e.g.,
searching for anything related to ‘‘Small Evaluation
Group’’ or ‘‘Stepwise deliveries’’). This reading was guided
by preliminary propositions made; these were the results of
previous experiences, repeated discussions of the responses
during the data collection phase. In the end, we ensured
that all responses had been read through at least once from
every point of view, by at least one researcher.

The research can be considered to be grounded theory
[86] in the sense that we collected data to build models
for previously un-researched questions, as contrasted to
validating a pre-defined hypothesis. The ideas were refined
already during data collection, and the questions were
more directed during the last interviews. Strictly, this gives



422 R. Land, I. Crnkovic / Information and Software Technology 49 (2007) 419–444
no external validity in the traditional sense – the data fits
the model, because the model is built from the data, and
it has been argued that the validation that can be achieved
by this method is a proper understanding, which can only
be judged by others [64,86]. After this multiple case study,
we have initiated a validation phase, in which we by means
of a questionnaire are validating and quantifying the
results presented in the present paper. So far, a few organi-
zations have been studied and the preliminary results are in
line with the present paper [59,60].

We have deliberately avoided labeling the outcome of
the cases as being good or bad, as the criteria as to how
to do this are not at all obvious and are practically difficult
to determine. Problems in answering this question include:
how many years need to pass before all effects of the inte-
gration are known? How can the quality of the resulting
systems be evaluated, if at all? (Some quality metrics could
be used such as defect detection rates, number of user
reports, measures of complexity [25,31,70], surveys of user
satisfaction.) Or is the competitiveness and financial situa-
tion of the company a certain number of years a more
interesting measure? When should return on investment
be evaluated, and how can we be sure that this can be
attributed to the integration and nothing else? An inherent
limitation of case studies is that it is impossible to know
what the result of some other choice would have been.
All value statements therefore come from the interviewees
themselves, based on their perception of, e.g., whether time
and money was gained or wasted.

2.1. Limitations

As the cases represent a wide variety and size of organi-
zations, domains, and systems, a natural question is to
what extent the observations indeed are general, or only
apply to similar organizations, domains, or systems. It
appears that the problems and solutions are general (for
example that a smaller team may be managed more infor-
mally than a large, or that a safety-critical system would
require a stricter process than an entertainment product
[9]). This means that the diversity among the cases is a
strength which increases the external validity of the find-
ings. On the other hand, it could also be argued that we
could not reliably find any systematic differences between
the cases, as we have too few of each type and size of orga-
nization, domain, and system. It might also be argued that
the way cases were selected (mainly through personal aca-
demic contacts) systematically would exclude some type of
cases (e.g., organizations with little collaboration with the
academic world).

The cases include only western cultures. It is possible
that some of our observations are of less importance in
other parts of the world, and that a study including orga-
nizations in other cultures would come up with additional
observations. For example, the small evaluation group pro-
cess practice (Section 3.2) to some extent assumes a method
of making decisions involving many different points of
view; in a more authoritative culture (i.e. with larger
‘‘power distance’’ [34]), a small evaluation group would
perhaps not be an appropriate way of making a decision.
Matters become even more complex when considering that
international mergers and acquisitions will involve two dif-
ferent cultures, which will need to find common denomina-
tors to be able to work together.

We have approached the problem and formulated ques-
tions in terms of the systems (at a high level) and about
processes. Other viewpoints could focus more on people
and psychology, and study how to make processes and
practices actually work [80].

2.2. The cases

The cases come from different types and sizes of organi-
zations operating in different business domains. The case
studies have included global and distributed organizations
and collaborations, including (in alphabetical order): ABB,
Bofors, Bombardier, Ericsson, SAAB, Westinghouse, and
the Swedish Defence Research Agency. Several cases
involve intercontinental collaborations, while organiza-
tions B and E are national (but involve several sites). The
size of the maintenance and development organizations
range from a few people to several hundred people, and
the system qualities required are very different depending
on the system domain. What the cases have in common
though is that the systems have a significant history of
development and maintenance.

The cases are summarized in Table 1. They are labeled
A, B, etc. in line with previous publications [48,50,52–
55,57,58]. Cases E1, E2, F1, F2, and F3 occurred within
the same organizations (E and F). Throughout the paper,
we will refer to the cases and often point into specific sourc-
es of data. For these data sources, the acronyms used are IX

for interviews, DX for documents, and PX for participation,
where X is the case name (as e.g., in IA, the interview of
case A), plus an optional lower case letter when several
sources exist for a case (as e.g., for interview IDa, one of
the interviews for case D). IX: n refers to the answer to
question n in interview IX. All data sources can be found
in the technical report [57]. For direct quotes, quotation
marks are used (‘‘’’).

Some cases have successfully performed some integra-
tion, others are underway. All cases reported both success-
es and relative failures, which are all taken into account in
the present paper.

The rest of this section presents details for all of the nine
cases. One of the cases (case F2) is described in depth, fol-
lowed by more summarized descriptions of the others. The
motivation for selecting case F2 for the in-depth descrip-
tion is that it illustrates many of the concepts brought for-
ward in the paper. It is also the case with the largest
number of interviews made (six), and one of the authors
(R.L.) has worked within the company (in case F1) and
gathered information not formalized through interview
notes. We have chosen to keep the case labels consistent



Table 1
Summary of the cases

Organization System domain Goal Information resources

A Newly merged
international company

Safety-critical systems
with embedded software

New HMIa platform to be
used for many products

Interview: project leader for
‘‘next generation’’ development
project (IA)

B National corporation
with many daughter
companies

Administration of stock
keeping

Rationalizing two systems
within corporation with
similar purpose

Interview: experienced manager
and developer (IB)

C Newly merged
international company

Safety-critical systems
with embedded software

Rationalizing two core
products into one

Interviews: leader for a small
group evaluating integration
alternatives (ICa); main architect
of one of the systems (ICb)

D Newly merged
international company

Off-line management of
power distribution
systems

Reusing HMIa for Data-
Intensive Server

Interviews: architects/developers
(IDa, IDb).

E1 Cooperation defense
research institute and
industry

Off-line physics
simulation

Creating next generation
simulation models from
today’s

Interview: project leader and
main interface developer (IE1)
Document: protocol from startup
meeting (DE1)

E2 Different parts of
Swedish defense

Off-line physics
simulation

Possible rationalization of
three simulation systems with
similar purpose

Interview: project leader and
developer (IE2)
Documents: evaluation of
existing simulation systems
(DE2a); other documentation
(DE2b, DE2c, DE2d, DE2e, DE2f)

F1 Newly merged
international company

Managing off-line
physics simulations

Possible rationalization by
using one single system

Participation: 2002 (R.L.) (PF1a);
currently (R.L.) (PF1b).
Interviews: architects/developers
(IF1a, IF1b); QA responsible (IF1c)
Documentation: research papers
(DF1a); project documentation
(DF1b)

F2 Newly merged
international company

Off-line physics
simulation

Improving the current state
at two sites

Interviews: software engineers
(IF2a, IF2b, IF2f); project manager
(IF2c); physics experts (IF2d, IF2e)

F3 Newly merged
international company

Software issue reporting Possible rationalization by
using one single system

Interview: project leader and
main implementer (IF3)
Documentation: miscellaneous
related (DF3a, DF3b)

a HMI, Human–Machine Interface.

R. Land, I. Crnkovic / Information and Software Technology 49 (2007) 419–444 423
with previous publications, which explains why the cases
are not labeled according to the order in which they are
presented.

2.2.1. Case F2: off-line physics simulation

Organization F is a US-based global company that
acquired a slightly smaller global company in the same
business domain, based in Sweden. To support the core
business, physics computer simulations are conducted.
Central for many simulations made is a 3D simulator con-
sisting of several hundreds of thousands lines of code
(LOC) (IF2e:1, IF2f:1). Case F2 concerns two simulation
systems consisting of several programs run in a sequence,
ending with the 3D simulator (IF2a:1, IF2b:1). The pipe-
and-filter architecture [12] and the role of each program
is the same for both existing systems, and all communica-
tion between the programs is in the form of input/output
files of certain formats (IF2a:1,9, IF2b:7, IF2c:10,11, IF2d:8,
IF2e:5, IF2f:8). See Fig. 1.
The 3D simulator contains several modules modeling
different aspects of the physics involved. One of these mod-
ules, which we can call PX (for ‘‘Physics X’’), needs as
input a large set of input data, which is prepared by a
2D simulator. In order to help the user preparing data
for the 2D simulator, there is a ‘‘pre-processor’’, and to
prepare the PX data for the 3D simulator, a ‘‘post-proces-
sor’’ is run; these programs are not simple file format trans-
lators but involve some physics simulations as well (IF2a:1,
IF2b:1).

It was realized that there was a significant overlap in
functionality between the two simulation systems present
within the company after the merger. It was not considered
possible to just discontinue either of them and use the other
throughout the company for various reasons. In System 1
(the US system), a more sophisticated 2D simulation meth-
odology was desired, a methodology already implemented
in the System 2 (the Swedish system) (IF2a:3). In System 2
system on the other hand, fundamental problems with their



3D Simulator1Preprocessor1 2D Simulator1 Postprocessor1

3D Simulator2Preprocessor2 2D Simulator2 Postprocessor2

System 1

System 2

Fig. 1. The batch sequence architecture of the existing systems in case F2. Arrows denote dependency; data flows in the opposite direction.

424 R. Land, I. Crnkovic / Information and Software Technology 49 (2007) 419–444
mathematical model had also been experienced; it was, e.g.,
desired to separate different kinds of physics more to make
it more flexible for different types of simulations (IF2a:3). In
addition, there are two kinds of simulations made for dif-
ferent customers (here we can call them simulations of type
A and B), one of which is the common type among System
1’s customers, the other common among System 2’s cus-
tomers (IF2a:1, IF2c:10). All this taken together led to the
formation of a common project with the aim of creating
a common, improved simulation system (IF2c:3). The pre-
processor, post-processor, and parts of the 3D simulators
are now common, but integration of the other parts are
either underway or only planned. There are thus still two
distinct systems. The current state and future plans for each
component are:

• Pre-processor. The pre-processor has been completely
rewritten in a new language considered more modern,
i.e. Start from Scratch (IF2b:1,7). Based on experience
from previous systems, it provides similar functionality
but with more flexibility than the previous pre-proces-
sors (IF2b:7). It is however considered unnecessarily
complex because two different 2D simulators currently
are supported (IF2b:7,9).

• 2D Simulator. Although the 2D simulators are branched
from a common ancestor, they are no longer very simi-
lar (IF2a:1, IF2b:7, IF2d:7,8). By evolving the simulator of
system 1, a new 2D simulator is being developed which
will replace the existing 2D simulators, i.e. Choose One

(IF2a:9, IF2b:7, IF2d:7,8). It will reuse a calculation meth-
odology from System 2 (IF2a:3, IF2c:9). Currently both
existing 2D simulators are supported by both the pre-
and post-processor (IF2b:7,9, IF2d:7).

• Post-processor. It was decided that System 2’s post-pro-
cessor, with three layers written in different languages,
would be the starting point, based on engineering judg-
ments, i.e. Choose One (IF2a:7, IF2c:7, IF2d:6). This led to
Preprocessornew

2D Simulator1

2D Simulator2

System 1

System 2

Fig. 2. The currently common and diffe
large problems as the fundamental assumptions turned
out to not hold; in the end virtually all of it was rewrit-
ten and restructured, i.e. Start from Scratch although
still with the same layers in the same languages (IF2a:9,
IF2c:7,9, IF2d:6,7, IF2e:7).

• 3D simulator. The plan for the (far) future is that the
complete 3D simulator should be common, i.e. Evolu-

tionary Merge (IF2a:3, IF2c:3, IF2f:3). ‘‘X’’ physics is
today handled by a new, commonly developed module
that is used in both the Swedish and US 3D simulators
(IF2e:7). It has a new design, but there are similarities
with the previous modules (IF2d:7). In order to achieve
this, new data structures and interfaces used internally
have been defined and implemented from scratch
(IF2e:7, IF2f:6,7); common error handling routines were
also created from scratch (IF2e:7); these packages should
probably be considered part of the infrastructure rather
than a component. All this was done by considering
what would technically be the best solution, not how it
was done in the existing 3D simulators (IF2e:7,8,
IF2f:6). This meant that the existing 3D simulators had
to undergo modifications in order to accommodate the
new components, but they are now more similar and
further integration and reuse will arguably become eas-
ier (IF2e:7).

To create a common system, it was considered possible
to discontinue the first three parts, as long as there is a sat-
isfactory replacement, although the simulators need to be
validated which makes time to release longer (IF1c:6,
IF1f:6). Fig. 2 shows the current states of the systems. It
should be noted that although there are two 3D simulators,
some internal parts are common, as described by Fig. 3.

2.2.2. Other cases

This section presents the most relevant observations in
each of the remaining cases.
3D Simulator1

Postprocessornew

3D Simulator2

rent parts of the systems in case F2.



PW1

PZ2

PY1 PZ1

PX

PY2

Error
Handling

PW2

System 1's 3D Simulator

System 2's 3D Simulator

Data
Structures

Fig. 3. The currently common and different parts (exemplified) of the 3D simulators in case F2.

R. Land, I. Crnkovic / Information and Software Technology 49 (2007) 419–444 425
Case A. Organization: Newly merged international com-

pany. System domain: Safety-critical systems with embedded

software. To avoid duplicated development and mainte-
nance efforts, it was decided that a single human–machine
interface (HMI) platform should be used throughout the
company, instead of the previously independently devel-
oped HMIs for their large hardware products (IA:1,2,3).
One of the development sites was considered strongest in
developing HMIs and was assigned the task of consolidat-
ing the existing HMIs within the company (IA:2). New
technology (operating system, component model, develop-
ment tools, etc.) and (partly) new requirements led to the
choice of developing the next generation HMI platform
without reusing any implementations, but reusing the
available experience about both requirements and design
choices (IA:5,6,7). This also included reuse of what the
interviewee calls ‘‘anti-design decisions’’, i.e. learning from
what was not so good with previous HMIs (IA:7). The most
important influence, apart from their previous experience
in-house, was one of the other existing HMIs which was
very configurable, meaning it was possible to customize
the user interface with different user interface requirements,
and also to gather data from different sources (IA:3,5).
These two systems had very different underlying platforms:
one was based on open source platforms and the other on
commercial solutions (IA:1,2,8) which – in the context of
this company – excluded the possibility of a Merge in prac-
tice. As resource constraints were not a major influence, the
decisive factor when choosing between the remaining strat-
egies was the new consolidated set of requirements, espe-
cially larger configurability of the system, and the
availability of new technology (IA:3,5). Therefore, Start
from Scratch was desired by the architects over Choose

One and thus selected (IA:7,8).
Case B. Organization: National corporation with many

daughter companies. System domain: Administration of

stock keeping. One loosely integrated administrative system
had been customized and installed at a number of daughter
companies (IB:1). In one other daughter company, a tightly
integrated system had already been built, but for the future,
it should be merged with the loosely integrated system
(IB:3). The large system had rich functionality and high
quality, and was installed and used in many daughter com-
panies. Discontinuing it would be a waste of invested
resources and was not even considered as an option, i.e.
Start from Scratch was excluded. The smaller system was
built on the tight integration paradigm, while the large sys-
tem was built as a loose integration of many subsystems
(IB:1,6,7,13). The difference in approach made Merging
the systems infeasible, therefore the Choose One strategy
was chosen (IB:7). The total integrated system was stripped
down piece by piece, and functionality rebuilt within the
technological framework of the loosely integrated system
(IB:3,7). Many design ideas were however reused from the
totally integrated system (IB:7).

Case C. Organization: Newly merged international com-

pany. System domain: Safety-critical systems with embedded

software. The systems and development staff of case C is
the largest among the cases: several MLOC and hundreds
of developers (ICb:1,9). The systems’ high-level structure
were similar (ICa:7, ICb:1), but there were differences as
well: some technology choices, framework support mecha-
nisms such as failover, the support for different (natural)
languages, and error handling were designed differently,
and there was a fundamental difference between providing
an object model or being functionally oriented (ICb:1,6,7).
At the time of the company merger, new generations of
these two systems were being developed and both were
nearing release (ICa:1, ICb:1). Senior management first
demanded reuse of one system’s HMI and the other’s
underlying software within 6 months, i.e. Rapid Merge,
which the architects considered unrealistic (ICa:6,8, ICb:6).
The strict separation of software parts implied by being
embedded in different hardware parts could make Evolu-

tionary Merge possible, requiring 2 years. Merge was,
according to the architects, the wrong way to go, and a bet-
ter option would be to Choose One (ICa:6, ICb:6). However,
management seemed unable to make a decision, and as
time passed both systems were independently released
and deployed at customers. Eventually management
allowed that either (but not both) could be discontinued,
allowing for the Choose One strategy which was imple-
mented (ICa:6). The delay caused an estimated loss of 1
year of development effort of a team of several hundred
developers, confusion to the customers who did not know
which of the two products to choose, and required addition
effort in migrating the customers of the retired system to
the chosen one (ICa:6, ICb:6). One of the interviewees points
out that although the process seems less than satisfactory it
is difficult to say whether other approaches would have
been more successful (ICa:12). Once this decision was made,
reusing some components of the discontinued system into



426 R. Land, I. Crnkovic / Information and Software Technology 49 (2007) 419–444
the other became easier (ICb:7). It took some twenty per-
son-years to transfer one of the major components, but
these components represented so many person-years that
this effort was considered modest compared to rewrite,
although (with the words of one interviewee) ‘‘the solutions
were not the technically most elegant’’ (ICb:7).

Case D. Organization: Newly merged international com-

pany. System domain: Off-line management of power distri-

bution systems. After the company merger, the two
previously competing systems have been continued as sep-
arate tracks offered to customers; some progress has been
made in identifying common parts that can be used in both
systems, in order to eventually arrive at a single system
(IDa:1,3, IDb:5,6). The two systems, both consisting of a cli-
ent HMI and a server, have a common ancestry, but have
evolved independently for 20 years (IDa:1). System 1’s HMI
built on more aged technologies, and around the time of
the merger the customers of this system considered the
HMI to be outdated; it was therefore decided that it should
be replaced by System 2’s more modern user interface, thus
Choose One (IDa:1, IDb:3). In System 1, two major improve-
ments were made: System 2’s HMI was reused, and a com-
mercial GIS (Geographic Information System) tool was
acquired (instead of System 2’s data engineering tool)
(IDa:1, IDb:3,8). Five years before the merger System 2’s
HMI was significantly modernized which made reusing it
possible thanks to the new component-based architecture
(IDa:1, IDb:3,7,8). Its component framework made it possi-
ble to transfer some functionality from System 1’s HMI by
adding and modifying components (IDb:7). Also contribut-
ing to the possibilities for using System 2’s HMI with Sys-
tem 1’s server was the similarities between the systems,
both from the users’ point of view (IDb:6) and the high-level
architecture, client–server (IDa:7, IDb:7,8); these similarities
were partly due to a common ancestry some 20 years earlier
(IDa:1). This made it relatively easy to modify the server of
System 1 in the same way as the server of System 2 had
been modified 5 years ago when the modern HMI was
developed (IDb:8). The servers themselves are still separate;
they both implement the same industry standards and the
plans are to perform an Evolutionary Merge but there are
yet no concrete plans (IDa:1, IDb:6).

Case E1. Organization: Cooperation defense research

institute and industry. System domain: Off-line physics sim-

ulation. Several existing simulation models were to be inte-
grated into one. The goal was not only to integrate several
existing systems, but also to add another, higher level of
functionality (IE1:1,3). Retiring the existing systems was
possible since all parties would benefit from the new system
(IE1:1). There were a number of existing simulation models,
implemented in FORTRAN and SIMULA, which would
make reuse into an integrated system difficult (IE1:6). Also,
the new system would require a new level of system com-
plexity for which at least FORTRAN was considered insuf-
ficient; for the new system Ada was chosen and a whole
new architecture was implemented using a number of
Ada-specific constructs (IE1:6,7). Ada would also bring a
number of additional benefits such as reusable code,
robustness, commonality within the organization
(IE1:6,7). Many ideas were reused however, and transform-
ing some existing SIMULA code to Ada was quite easy
(IE1:7). Thus Start from Scratch strategy was chosen
(IE1:6).

Case E2. Organization: Different parts of Swedish

defense. System domain: Off-line physics simulation. A cer-
tain functional overlap among three simulation systems
was identified (IE2:1, DE2a). The possibility of retiring
any, but not all, of these systems was explicitly left open,
partly because of limited resources and partly because
(some of) the functionality was available in the others
(DE2a, IE2:13). System 1 and System 2 were somewhat com-
patible, but due to very limited resources the only integra-
tion has been System 1 using the graphical user interface of
System 2 (IE2:6). The two systems use the same language
(Ada) and the integration was very loose (IE2:7). Neverthe-
less, reusing System 2’s user interface required more effort
than expected, due to differences in input data formats, log
files, and the internal model (IE2:7). We thus have some
reuse but no Merge, as there are no resources and no con-
crete plans for integrating these two systems into one.
Although not directly replaced by the others, System 3
has in practice been retired (IE2:6,13) and we consider this
case to be a Choose One strategy (actually Choose Two out
of three).

Case F1. Organization: Newly merged international com-

pany. System domain: Managing off-line physics simulations.

After the company merger, there has been a need to
improve and consolidate management and support for cer-
tain physics simulations, focused around the major 3D sim-
ulators used (those described in case F2), but also including
a range of user interfaces, data management mechanisms,
and automation tools for different simulation programs
(IF1a:1, IF1b:1, IF1c:1,2, DF1a, PF1a, PF1b). An ambitious
project was launched with the goal of evaluating the exist-
ing systems. There were differences in architectures, pro-
gramming languages, technologies, and data models
(IF1a:6, IF1b:6, IF1c:6,7,9, DF1a, PF1a, PF1b). It was not con-
sidered possible to discontinue development on the existing
systems before a full replacement was available (IF1c:6,
DF1a, PF1a, PF1b). Two possibilities were outlined: a tight
merge with a result somewhere between Merge and Choose

One, and a loose integration where the systems would share
data in a common database in an Evolutionary Merge man-
ner; the loose integration alternative was eventually chosen
(IF1a:3, IF1c:3, PF1a, DF1a). The many differences indicated
a very long development time, and it appears as this solu-
tion was perceived as a compromise by the people involved,
and was followed by no concrete activities to implement
the decision (IF1c:6, PF1a, PF1b). Later, there have been
numerous other small-scale attempts to identify a proper
integration strategy, but the limited resources and other
local priorities in practice have resulted in no progress
towards a common system (IF1a:3,6, IF1b:9,11, IF1c:6,
DF1a, PF1a, PF1b). Currently, at least some stakeholders



R. Land, I. Crnkovic / Information and Software Technology 49 (2007) 419–444 427
favor Choose One, but the scope is unclear (discussions
tend to include the whole software environment at the
departments) and integration activities still have a low pri-
ority (IF1a:1,6, IF1b:6,9, IF1c:1, PF1b). Some participants
have seriously begun to question the value of integration
altogether (IF1b:3,9, IF1c:6,9) and the result so far, after 4
years, has been No Integration.

Case F3. Organization: Newly merged international com-

pany. System domain: Software issue reporting. Three differ-
ent software systems for tracking software issues (errors,
requests for new functionality etc.) were used at three dif-
ferent sites within the company, two developed in-house
and one being a 10-year-old version of a commercial sys-
tem (IF3:1). The two systems developed in-house where
somewhat compatible (IF3:1). All involved saw a value in
a common system supporting the best processes within
the company, and apart from the fact that a transition to
such a common system would mean some disruption at
each site, independently of whether the common system
would be completely new or a major evolution of the cur-
rent system used there was no reluctance to the change
(IF3:3,10,11). Being a mature domain, outside of the com-
pany’s core business, it was eventually decided that the best
practices represented by the existing systems should be
reused, and a configurable commercial system was to be
acquired (i.e. the organization chose to Start from Scratch

by acquiring a commercial solution) and customized to
support these (IF3:6).

3. Vision process

The starting point is often an initial vision from senior
management (ICa:6, ICb:6, IDb:3,5,6, IF2c:3). The goal is
to rationalize the activities related to the products by,
e.g., rationalizing maintenance, reducing data overlap,
and avoiding duplicated processes (IA:2,3, IB:1, ICa:6,
ICb:6, IDb:3,5,6, PF1a, PF1b, DF1b, IF2d:3).

In the rest of this section we will introduce the criteria
for selecting a strategy (Section 3.1, to be elaborated
throughout the rest of the paper), and in Section 3.2 discuss
the process practices found in the cases.

3.1. The goal of the vision process

The expected outcome of the vision process is the selec-
tion of one of the strategies presented earlier: Start from
Scratch, Choose One, Merge (or possibly No Integration),
and outlines of the future system and the implementation
process. Selecting a strategy is in any real-life situation nat-
urally influenced by many factors of many different kinds,
such as: the current state of the existing systems, both tech-
nically and management aspects; the level of satisfaction
with existing systems among users, customers, and the
development organization; the completeness or scope of
the existing systems with respect to some desirable set of
features; available development resources; desired time to
market, etc.
A reasonable starting point for a systematic approach
would be to early focus on questions and issues that could
rule out some strategies. Based on the cases, we have found
two such main concerns that, when properly addressed, can
help excluding strategies:

• Architectural compatibility: Depending on how similar
the existing systems are in certain respects, integration
will be more or less difficult. The strategies Rapid Merge

will not be possible if the systems are not very similar,
and if they are even less compatible, Evolutionary Merge

may also be excluded. Start from Scratch and Choose

One are essentially not affected by the compatibility of
the existing systems. More exactly what types of similar-
ities are the most important, and how to evaluate the
existing systems, is not obvious though, and will be elab-
orated in depth in Section 4.

• Retireability: Stakeholders may consider retiring a sys-
tem unfeasible for various reasons, such as market con-
siderations, user satisfaction, or potentially the loss of
essential functionality. If the final statement is that no
existing systems can be retired, the strategies Start from
Scratch and Choose One can be excluded. However,
retireability is not a static property in the same sense
as the compatibility of the existing systems, but is nego-
tiable. We acknowledge the difficulties of retiring and
replacing a system that is in use, but we suggest that
the impact on the strategy selection must be understood
by the various stakeholders that might have an opinion.
Although important, the question of retireability has not
been the focus of our research and will in the present
paper not be elaborated to the same extent as
compatibility.

We do not suggest that compatibility and retireability
are more important than other considerations that also
influence the choice of strategy. Nor do we suggest a strict-
ly sequential process where compatibility and retireability
are evaluated first, and other issues are only considered
after the initial exclusion of strategies. In practice all con-
siderations will be discussed more or less simultaneously.

Table 2 summarizes the exclusion of strategies (black
denotes exclusion).

It is obvious that it is highly undesirable to arrive at the
conclusion that the systems are not compatible, but that
none of the existing systems can be retired. The remaining
strategy No Integration is – according to our experience
from the cases – usually considered the worst option, bring-
ing long-term problems with double maintenance and evo-
lution costs and users having to learn and use several
similar systems for similar tasks. However, it should be
mentioned that some interviewees proposed the opinion
of not integrating at all. ‘‘Why integrate at all?’’ (ICb:7) is
indeed a valid question, which will arise if a decision is
not accompanied with priority and enough resources
(IF1b:3, IF1c:6,9,11, PF1a). Sometimes it might simply not
be worth the effort to integrate – will the future savings



Table 2
The exclusion of possible strategies

By following the rows corresponding best to the situation in a case (one for architectural compatibility and one for retireability), black denotes what
strategies are excluded.

428 R. Land, I. Crnkovic / Information and Software Technology 49 (2007) 419–444
through rationalization be larger than the integration
efforts (IF1c:9, IF2d:3)? In case E2 there were very few
resources available, which led to a very modest vision, in
practice meaning no integration (IE2:6).

We further describe and analyze the selection criteria as
follows: architectural compatibility in depth (Section 4),
and retireability more briefly (Section 5), followed by other
influences: the strategies’ implication on the implementa-
tion process (Section 6), and resources, synchronization,
and backward compatibility (Section 7). But before that,
we present beneficial practices found for the vision process.

3.2. Suggested vision process practices

This section describes vision process practices repeatedly
suggested among the cases. These are issues emphasized by
the interviewees in the cases, sometimes based on positive
experiences, but sometimes based on negative experiences,
i.e. that they in retrospect ascribe some negative effects to
the lack of these practices. We have formulated the lessons
learned as statements describing what should be done, not
necessarily how things were done in the cases. For each
practice identified, we have argued whether it is inherent
and unique to the in-house integration context or is known
from other software activities. We have identified two
external causes for some of the practices: the distributed
organizations and the (typically) long time scale required.
These are typical characteristics of the in-house integration
context, but are not unique to it – however, not being
unique does not make these practices less important for
integration.

Two practices were found that seem unique to the con-
text of in-house integration, because they explicitly assume
there are two (or more) overlapping systems, and two pre-
viously separate groups of people that now need to
cooperate:

Proposition 3.1 (Small evaluation group). After senior

management has identified some potential benefits with

integration, a small group of experts should be assigned to

evaluate the existing systems from many points of view and

describe alternative high-level strategies for the integration.

In cases C and F1 a small group evaluated the existing
systems with the specific goal to identify how integration
should or could be carried out, at the technical level
(ICa:6, ICb:6, IF1c:6, PF1a, PF1b, DE1a). Case F1 involved
not only developers but also users and managers at differ-
ent stages with different roles; the users graded different
features of the existing systems and the managers were
responsible for making the final decision (PF1a, DF1a)
[55]. It should be pointed out that during other types of
software activities, such as new development and evolu-
tion, one should involve all relevant stakeholders [45].
What makes in-house integration unique in this respect is
that there are two of each kind of stakeholder: users of sys-
tem A, users of system B, developers of system A, develop-
ers of system B, etc. It is therefore crucial to involve both
sides, as no single individual has overview of all systems



R. Land, I. Crnkovic / Information and Software Technology 49 (2007) 419–444 429
(both cases C and F1 concern newly merged companies).
Also, everyone involved is likely to be biased and there is
a clear risk that the participants ‘‘defend’’ their own system
(ICb:6), there must be an open mind for other solutions
than ‘‘ours’’ (IF3:11). In the cases it appears that there
has indeed been a good working climate with a ‘‘good will’’
from everyone (ICb:6, PF1a). In both cases this was consid-
ered a good scheme; in case C the architects immediately
saw that there were no major technical advantages of either
system, and wanted to immediately discontinue one of the
two systems, indifferent which, rather than trying to merge
the systems (ICb:6). The late decision (indeed, to discontin-
ue one of the systems) was due to other reasons (see ‘‘timely
decisions’’ below). A similar scheme was used in case E2,
where an external investigation was made, however with
less technical expertise (IE2:6, DE2a).

Proposition 3.2 (Collect experience from existing sys-
tems). All experience of the existing systems, in terms of,
e.g., user satisfaction and ease of maintenance must be

collected in order to be able to describe the envisioned system

properly (IA:6, PF1a, DF1a, IF2e:6, IF2f:6, IF:11).

Ideally, one would like to define the new system as con-
sisting of the best parts of the existing systems; however,
this is in practice not as simple as it first may seem. The
requirements on the future system are clearly dependent
on the experience of the previous systems, and can be stat-
ed in terms of existing systems (IA:6, PF1a, DF1a, IF3:6).
However, this means that the requirements need not (some
of the sources even say should not) be too detailed
(IA:5,6,11, IC1a:6, PF1a, DF1a). In case A, the development
organization explicitly asked sales people for ‘‘killing argu-
ments’’ only, not a detailed list of requirements (IA:5). This,
combined with the experience and understanding of the
existing systems, makes a detailed list of requirements
superfluous (i.e. during these early activities; later a formal
requirements specification may be required). The people
devising the vision of the future system (e.g., a small eval-
uation group) need to study the other systems, preferably
live (ICa:6, DE2a, IF3:6). Case F2 involves complex scientific
physics calculations, and the study of the existing systems’
documentation of the implemented models was an impor-
tant activity (IF2e:6, IF2f:6). When looking at the state of
the existing systems, an open mind for other solutions than
the current way of doing things is essential (IF3:11).

We identified one practice associated with the long time
scale involved in integration:

Proposition 3.3 (Improve the current state). To gain

acceptance, the efforts invested in the integrated system

must not only present the same features as the existing
system, but also improve the current state.

The existing systems must be taken into account (see
practice ‘‘Collect experience from existing systems’’), but
one should not be restricted by the current state (IF2f:6);
in case F2, it was indeed considered a mistake to keep
the old data format and adapt new development to it
(IF2a:9, IF2d:7,9,11). The actual needs must be more impor-
tant than to preserve the features of the existing systems
(IF3:11). One interviewee stated that a new system would
take �10 years to implement, and a merged (and improved)
system must be allowed to take some years as well (IF2f:6).
In case E1, integrating several small, separate pieces as was
envisioned required a more structured language (Ada),
even though it would in principle be possible to reuse many
existing parts as they were written in Fortran (IE1:6); the
organization was interested in Ada as such, which also con-
tributed to this choice (IE1:7).

The remaining two practices are not unique to in-house
integration. In fact, they should be common sense in any
decision-making in an organization. The reason to list
them explicitly is that they were mentioned repeatedly in
the cases, partly based on mistakes in these respects.

Proposition 3.4 (Timely decisions). Decisions must be made

in a timely manner (ICa:6, ICb:6,11).

When no decisive technical information has been found,
a decision should be made anyway. In case C, the decision
to discontinue one of the systems could have been made
much earlier, as no new important information surfaced
during the endless meetings with the small technical group
(ICb:6). This means that 1 year of development money was
wasted on parallel development, and the discontinued sys-
tem has to be supported for years to come (ICa:6, ICb:6). ‘‘It
is more important with a clear decision than a ‘totally right’
decision’’ (ICb:11). You cannot delegate the responsibility
to agree to the grassroots (ICb:6). ‘‘Higher management
must provide clear information and directives. . . It is. . .
unproductive to live in a long period of not knowing’’
(ICb:11).

Proposition 3.5 (Sufficient analysis). Before committing to
a vision, sufficient analysis must be made – but not more.

Obvious as that may seem, the difficulty is the tradeoff
between the need for understanding the existing systems
well enough without spending too much time. In case F2,
insufficient analysis caused large problems: what was
believed to involve only minor modifications resulted in
complete re-design and implementation (IF2a:9, IF2b:9,
IF2c:3, IF2d:6, 11). One method of ensuring sufficient analy-
sis could be to use the ‘‘small evaluation group’’ practice.
Of course, pre-decision analysis somewhat contradicts the
practice ‘‘timely decisions’’; a stricter separation from the
actual implementation process is also introduced, implying
a more waterfall-like model which might not be suitable
(IF1b:5,6).

4. Architectural compatibility

Architectural compatibility is a largely unexplored area,
in spite of the fact that it is a widely recognized problem
[22,23,28]. More is known of problems than of solutions.
In this section, we elaborate the notion of compatibility
by investigating what was actually reused in the cases.



430 R. Land, I. Crnkovic / Information and Software Technology 49 (2007) 419–444
The conclusions are thus of a practical nature (what seem
to make sense to reuse under what circumstances) rather
than a precise definition of compatibility.

First, we present a framework for discussing reuse (Sec-
tions 4.1 and 4.2), followed by a number of observations
based on the cases (Section 4.3).

4.1. What software artifacts can be reused?

Although software reuse traditionally means reuse of
implementations [47], the cases repeatedly indicate reuse
of experience even if a new generation is implemented
from scratch, i.e. without reuse of code. In order to cap-
ture this, we have chosen to enumerate four types of
artifacts that can be reused: requirements, architectural
solutions (structure and supporting framework mecha-
nisms), components and source code. The first two
means reuse of concepts and experiences, and the two
latter reuse of implementations.

• Reuse of requirements: This can be seen as the external
view of the system, what the system does, including
both functionality and quality attributes (performance,
reliability etc.). Reusing requirements means reusing
the experience of features and qualities that have been
most appreciated and which need improvement com-
pared to the current state of the existing systems.
(Not discussed is the aspect of how the merge itself
can result in new and changed requirements as well;
the focus here is on from which existing systems
requirements were reused.)

• Reuse of architectural solutions: This can be seen as the
internal view of the system. Reusing solutions means
reusing experience of what have worked well or less well
in the existing systems. With architectural solutions, we
intend two main things (for more details see Section 4.4):
– Structure (the roles of components and relations

between them), in line with the definition given, e.g.,
by Bass et al. [5]. Reusing structure would to a large
part explicitly recognize architectural and design pat-
terns and styles [1,12,27,81].

– Framework: A definition suitable for our purposes is
an ‘‘environment defining components’’, i.e. an envi-
ronment specifying certain rules concerning how com-
ponents are defined and how they interact. A
framework embodies these rules in the form of an
implementation enforcing and supporting some
important high-level decisions.

• Reuse of components: Components are the individual,
clearly separate parts of the system that can potentially
be reused, ideally with little or no modification. We use
the term ‘‘component’’ in a wider sense than in, e.g., the
field of Component-Based Software Engineering [87];
modules seem to be the appropriate unit of reuse in
some systems, and hardware nodes (with embedded soft-
ware) in others, etc.
• Reuse of Source code. Source code can be cut and pasted
(and modified) given the target programming language
is the same. Although it is difficult to strictly distinguish
between reusing source code and reusing and modifying
components, we can note that with source code arbi-
trary chunks can be reused.

For each of these levels, there are associated documenta-
tion that could or would be reused as well, such as test
plans if requirements are reused, and some user documen-
tation if user interface components are reused.

For a large, complex system, the system components can
be treated as sub-systems, i.e. it is possible to discuss the
requirements of a component, its internal architectural
solutions, and the (sub-) components it consists of, and
so on (recursively). If there are similar components (com-
ponents with similar purpose and functionality) in both
systems, components may be decomposed and the same
reasoning applied to the components. We can thus talk
about a hierarchical decomposition of systems. Large sys-
tems could potentially have several hierarchical levels.

Reusing, decomposing and merging components means
that the interfaces (in the broadest sense, including, e.g., file
formats) must match. In the context studied, where an
organization has full control over all the systems, the com-
ponents and interfaces may be modified or wrapped, so an
exact match is not necessary (and would be highly unlike-
ly). For example, if two systems or components write sim-
ilar data to a file, differences in syntax can be overcome
with reasonable effort, and the interfaces can be considered
almost compatible. However, reuse of interfaces also
requires semantic compatibility as well as preservation
(or compatibility) of non-functional properties, which is
more difficult to achieve and determine. The semantic
information is in most cases less described and assumes a
common understanding of the application area.

Although reuse of all artifacts is discussed, the focus is
on reuse of architectural solutions and components, and
on the recursive (hierarchical) decomposition process.

4.2. Possible basic types of reuse in software merge

For each artifact enumerated, it is possible to apply
the high-level strategies presented earlier: Merge, Choose

One, and Start from Scratch; for the purpose of this
chapter we would like to rephrase them as (a) reuse from
both existing systems, (b) reuse from only one of the
existing systems, and (c) reuse nothing. (The No Integra-

tion strategy is always applied to the whole system, so
discussing it per artifact would not contribute to the dis-
cussion.) As for the high-level strategies, we discuss the
situation of more than two systems only in connection
to the cases. A matter of interpretation is where to draw
the border between type a, ‘‘reuse from both’’, and b,
‘‘reuse from one’’, in the situation when only very little
is reused from one of the systems; this is discussed in
Section 4.3 for some cases.



R. Land, I. Crnkovic / Information and Software Technology 49 (2007) 419–444 431
Different types of reuse can be applied at each of the
above mentioned/enumerated artifacts. For example,
requirements might be reused from all systems (type a),
but only the architecture and components of one is evolved
(type b). This makes it possible to search for certain pat-
terns in the cases revealing how different types of reuse
for different artifacts are related. For example, is it possible
to reuse architectural solutions from only one of the exist-
ing systems but reuse components from both? If so, under
what circumstances?
4.3. Observations concerning reuse in the cases

The cases are summarized in Table 3. For cases A, B, C,
E1 and F3 we can show the single system that was the out-
come, so for the system represented by these columns, we
present the type of reuse from the earlier system. For the
other cases, the original systems are still evolved and
deployed separately, and we report the reuse expected in
the envisioned future system as well as the current cross-re-
use from the other system(s). In addition, there is a possi-
bility to recursively look into components and consider
the requirements, architectural solutions, and (sub-) com-
ponents of the components, etc. This is done for cases D
and F2 where we have enough material to do so (for case
F2 in two levels); for most of the others, this did not make
sense when there was no reuse from more than one system.

In the table, for each system we have listed the four arti-
facts considered (requirements, architectural solutions,
components, and source code) and visualized the type of
reuse with black for reuse of type a ‘‘reuse from all’’, dark
grey for reuse of type b ‘‘reuse from one’’, and light grey
for reuse of type c ‘‘no reuse’’. Fields that have not been
possible to classify unambiguously are divided diagonally
to show the two possible alternative classifications; these
fields have been marked with a number indicating a text
comment (to be found below). (The classification has been
made by the researchers jointly, without disagreement.)

Based on Table 3, we can make a number of
observations:

Observation 1. A striking pattern in the table is the tran-
sition when following a column downwards from black to
dark grey to light grey, but not the other way around (not
considering transitions between components and source
code). This means that:

If it is not possible to reuse requirements from several of
the existing systems, then it is difficult, if not impossible, or

makes little sense to reuse architectural solutions and compo-

nents from several systems.

and
If it is not possible to reuse architectural solutions from

several of the existing systems, then it is difficult, or makes

little sense to reuse components from several systems.

There is only one possible exception from these general
observations (system F2:2D, see comment 5). We can also
note that the type of reuse of architectural solutions very
often comes together with the same type of reuse for com-
ponents. This means that if architectural solutions are
reused, components are often reused. This makes sense,
as the prerequisites for reusing the components are then
met, and it would often be a waste not to reuse existing
implementations.

Observation 2. In the cases where ‘‘reuse from all’’
occurred at the architectural solutions level, this did not
mean merging two different architectures, but rather that
the existing architectures were already similar. In the only
possible counter-case (case A), the development team built
mainly on their existing knowledge of their own system,
adapted new ideas, and reused the concept of configurabil-
ity from one other existing system. This is a strong indica-
tion of the difficulty of merging architectures; merging two
‘‘philosophies’’ (IE1:1), two sets of fundamental concepts
and assumptions seems a futile task [28]. This means that:

For architectural solutions to be reused from several sys-

tems, there must either be a certain amount of similarity,

or at least some architectural solutions can be reused and

incorporated into the other (as opposed to being merged).
That is, the fundamental structures and framework of

one system should be chosen, and solutions from the others
be incorporated where feasible.

Observation 3. In case D and F2 where the overall archi-
tectures structure were very similar (client–server and batch
sequence, respectively), the decomposed components fol-
low observations 1 and 2. This means that:

Starting from system level, if the architectural structures

of the existing systems are similar and there are components
with similar roles, then it is possible to hierarchically decom-

pose these components and recursively consider observations

1 and 2. If, on the other hand, the structures are not similar

and there are no components with similar purpose and func-

tionality, it does not make sense to consider further architec-

tural reuse (but source code reuse is still possible).
In the other case with similar system structures (case C)

the approach was to discontinue one and keep the other, in
spite of the similar structures. The reasons were: differences
in the framework, the equal quality and functionality of
both systems, combined with the large size of the systems.
This shows that architectural structure is not enough for
decomposition and reuse to make sense in practice. Never-
theless, in case C it was possible to reuse some relatively
small parts from the other system (with some
modification).

Observation 4. In cases C, D, F2 (and possibly E2) the
architectures were similar. One reason for this was that in
cases D and F2 the systems had a common ancestry since
previous collaborations as far back as 20 years or more
(IDa:1, IF2a:1). There also seems to be common solutions
among systems within the same domain, at least at a high
level (e.g., hardware architecture); there may also be
domain standards that apply (ICb:1,7, IF2a:1).

Although not directly based on the table, we would like
to make an additional remark. When it is not possible to
reuse architectural solutions or components it might still



Table 3
The types of reuse for the different artifacts in the cases

1. Architectural solutions were reused mainly from one, with heavy influence from one of (several) other systems.
2. It is unknown what will be reused in the future integrated system.
3. One component (the post-processor) started out as an attempt to reuse from System 2, but in the end only a small fraction of the original component
was left and should probably be considered source code reuse.
4. It is unsure whether any source code was reused from the retired system (not enough information).

432 R. Land, I. Crnkovic / Information and Software Technology 49 (2007) 419–444
be possible to reuse and modify arbitrary snippets of source
code. The benefit of this type of reuse is the arbitrary gran-
ularity that can be reused (e.g., an algorithm or a few meth-
ods of a class) combined with the possibility to modify any
single line or character of the code (e.g., exchanging all I/O
calls or error handling to whatever is mandated in the new
framework). There seems to be a simple condition for reus-
ing source code in this way, namely that the programming
language stays the same (or maybe ‘‘are similar enough’’ is
a sufficient condition), which should not be unlikely for
similar systems in the same domain. Source code thus
requires a much smaller set of assumptions to hold true
compared to combining components, which require the
architectural solutions to be ‘‘similar enough’’ (involving
both structure and framework).

4.4. Architectural compatibility as part of the vision process

Let us now return to the vision process, and ask the
question: based on the observations from the cases, what
needs to be analyzed early in order to make a proper strat-
egy selection? First, we can note that architectural compat-
ibility is a static property of a collection of systems and
cannot be negotiated if it gives an unsatisfactory answer.
It is therefore essential to evaluate it properly during the
vision process.



R. Land, I. Crnkovic / Information and Software Technology 49 (2007) 419–444 433
However, if a subset of the candidate systems (or some
subsystems) is considered compatible it may be possible
to change the scope of the integration project to include
only these subsystems, thus enabling the possibility of a
Merge. Case F1 exemplifies a change in scope, but unfortu-
nately no suitable set of systems to merge have been found
(IF1a:1, IF1b:1,6, IF1c:1, PF1a, PF1b). It may also be possible
to evolve one or all systems towards a state in which they
are compatible, i.e. performing an Evolutionary Merge –
although, given the time required, some other strategy
may be considered preferable, as shown by case C (ICa:6,
ICb:6). These two approaches, change scope or synchronize
the evolution of the systems, can thus be considered as
means to somewhat improve the compatibility in order to
make a Merge possible.

A definition of architectural (in-)compatibility would
be subject to the same semi-philosophical arguments as
definitions of architecture, and we will not attempt to pro-
vide one. Exactly what aspects of compatibility are the
most important to evaluate will arguably differ for each
new case. Some elements found in the cases, that we thus
suggest to be analyzed during the vision process, are
provided in the following. These elements can be a com-
plement to other reports of architectural incompatibility
[22,28]:

• Structure. Similar high-level structures seem to be
required for hierarchical decomposition and compo-
nent-wise comparison, a pre-requisite for a Merge. In
case D, both systems consisted of an HMI and server,
which made it possible to reuse the HMI from one sys-
tem into the other. In case E2 two of the existing systems
consisted of a graphical user interface (GUI) and a sim-
ulation engine, loosely coupled, which made reuse of the
GUI possible. In case F2, the two existing pipe-and-filter
structures were strikingly similar.

• Frameworks. Similarity of frameworks in the sense
‘‘environment defining components’’ is also one indi-
cator of compatibility. In case F2, the framework
can be said to describe separate programs communi-
cating via input and output files. Two of the existing
systems in case F3 were developed in Lotus Notes,
and they were, with the words of the interviewee,
‘‘surprisingly similar’’ (IF3:1). In case C, the hardware
topology and communication standards define one
kind of framework. In case F2, the framework can
be said to describe separate programs communicating
via input and output files.

• Data model. One common source of incompatibility in
systems is differences in the data model. Both syntactical
and semantical differences can require vast changes in
order to make system compatible. This has been a recur-
ring problem in case F1 (IF1a:6; DF1a, PF1a, PF1b). In
case F2, a new data model was defined and the existing
systems adapted (IF2e:7, IF2f:6). In case F3, the three
existing systems all implemented similar workflows,
however the phases were different (IF3:3).
Some systems in the cases shared a common ancestry
(cases D and F2) and/or were based on common standards
(C and D), but in no case were the systems compatible
enough to allow for an Rapid Merge. This indicates that
these factors in themselves do not guarantee total
compatibility.

Two of the cases may serve as examples on what may
happen if a Merge decision is made based on insufficient
knowledge about the compatibility of the systems. In cases
C and F1, senior management gave directions how a sys-
tem merge should be achieved: ‘‘try to agree and reuse as
much as possible’’ (ICb:6, also PF1a). In case C, this caused
an expensive delay as well as other problems (ICa:6,7), and
in case F1 the architecture and outlined integration plan
felt watered-down (DF1a, IF1c:6), and nothing happened
to realize it (PF1a, PF1b).
5. Retireability

Retiring a system is a difficult step, but may be neces-
sary. As we have argued, if retiring some or all of the exist-
ing systems is considered possible, this excludes some of the
high-level strategies. Trivial as this observation may seem,
or even oversimplifying, this suggests that the vision pro-
cess should include an analysis of retireability, meaning
that various stakeholders should be asked to explicitly
describe their opinion on the impact of retiring each of
the existing systems. Although retireability is not a definite
yes/no question, discussing it explicitly is one way of break-
ing down the overall task of selecting a strategy to more
manageable pieces.

We only present our observations from the cases more
briefly than for architectural compatibility, not because
this is less important, but because the factors influencing
the possibilities of retiring systems is not foremost a techni-
cal issue. Section 5.1 describes the influences found in the
cases, and Section 5.2 provide some suggestions on how
retireability should be evaluated as part of the vision
process.
5.1. Observations from the cases

Retireability, unlike architectural compatibility, can be
reevaluated or renegotiated. While all cases considered
the retireability of their existing systems it appears as this
was often not done explicitly to the same extent as the eval-
uation of compatibility.

The life cycle phase of the existing systems should be
considered (ICb:1,7, ICb:6, IE1:4, IF2e:6, IF2a:3). Case C
may serve as a negative example of this, where a new gen-
eration of both existing systems was being developed, but
not yet released, and the obvious choice would seem to
be to discard either of them before release (ICb:7, ICb:6);
however development did continue until both systems were
released, which led to lots of extra costs and problems
(ICb:6).



434 R. Land, I. Crnkovic / Information and Software Technology 49 (2007) 419–444
Another implication of the life cycle phase of the exist-
ing systems is what potential they have to be further
evolved in the future. In case D, one of the existing HMIs
had been restructured a few years before the company
merger, from a monolith which was very difficult to main-
tain without understanding the complete system, into a
component-based system, which has made it ‘‘straightfor-
ward to implement new functionality’’ (IDb:7). This was
influential when deciding to keep this HMI (IDb:7,8). In
case B, the loose integration of one of the systems which
would ensure long-term evolvability, was influential when
choosing system (IB:7,9,10,13).

Another influence is satisfaction with existing systems.
This involves many stakeholders (architects, users, man-
agement, etc.) and many aspects (functionality, quality,
architecture, performance, modifiability/evolvability, etc.).
When one or more of the existing systems are considered
unsatisfactory there is a tendency to favor replacing the
unsatisfactory system(s). If some of the existing systems
are considered aged, they are candidates for retirement,
as in case D where one of the existing HMIs was considered
aged and was replaced by another (IDb:3). In case F2, one
of the sites was about to develop something new, while the
other had realized some fundamental problems with the
physical models their software embedded, which led to a
successful common development project (IF2e:6, IF2a:3).

We may note the difference between retiring implementa-
tions (which this paper discusses) and the message communi-
cated externally to customers and users. In case C, there was
a big difference in the message to the market (that the prod-
ucts would be merged into one product family) and internally
(essentially Choose One system and retire the other) (ICa:6).

5.2. Retireability as part of the vision process

Changes are usually met with some reluctance, and it is
not easy to start discussing retiring a system that is in use.
Moreover, retireability is not easily stated as a yes or no
question. The effects of retirement (followed by replace-
ment) should to be investigated from various perspectives
(of e.g., users, customers, marketing department). From
the users’ point of view, proven high-quality systems are
not easily discarded, while systems considered aged are
candidates for retirements. Retiring a system might also
effectively mean that staff on one site will loose their jobs,
which raises an additional ethical and economical dilemma.

Some of the negative effects of retiring might be possible
to handle, such as providing seamless migration solutions
for customers, and marketing the replacing system as a nat-
ural successor (ICa:6). The final decision will involve weigh-
ing the negative consequences of retiring against the
positive consequences of being able to Choose One or Start

from Scratch (which are only possible if some systems are
planned for retirement).

Retireability should be considered from many different
stakeholders’ point of view, as during any requirements engi-
neering activity in any context [45,78]. However, it is likely
that different people will have different opinions, and there
must be mechanisms and roles that ensure that a timely deci-
sion is made, weighing all the different benefits and draw-
backs of retiring the particular systems. Our suggested
practice ‘‘Small Evaluation Group’’ could be organized so
that different stakeholders are involved at different stages.
They would evaluate and compare the existing systems from
different point of view, formulating high-level requirements
on the future system in terms of the functionality and quality
of the existing systems. In case F1, users, architects/develop-
ers and managers evaluated the systems in a defined process
with three phases (DF1, [55]).

6. Implementation process

When selecting a strategy, one must understand the con-
sequences on the time, cost and risk of implementing it. It
should be expected that the implementation process will be
different depending on the strategy chosen.

We first present some recurring patterns among the
cases, divided into risk mitigation tactics (Section 6.1)
and process practices (Section 6.2). In Section 6.3 we use
these observations to suggest how the implications on the
implementation process should be used when selecting a
strategy during the vision process.

6.1. Suggested risk mitigation tactics

We found five recurring risk mitigation tactics. These
seem to come mainly from the fact that there are two (dis-
tributed) groups involved; these practices are thus recom-
mendable to every distributed software development
effort. They are very much in line with recommendations
from other research in the field of distributed software
development [13,14,41]. Although they are not unique to
in-house integration, we present them here because they
are directly based on the experiences from the cases. This
might suggest that they are especially important in the in-
house context; one explanation is that when some systems
or system parts are even remotely considered for retire-
ment, the people and organization behind those systems
will react against it.

Proposition 6.1 (Strong project management). To run

integration efforts in parallel with other development efforts,

a strong project management is needed (e.g., IF1c:9,11,
IF2b:5,11, IF2e:9,11).

To be able to control development, senior manage-
ment and project management must have, and use, eco-
nomical means of control. Funding must be assigned to
projects, and cut from others, in a way that is consistent
with the long-term goals; otherwise the existing systems
will continue to be developed in parallel with some
sub-optimal goal (ICa:11, IDa:3, IDb:6, IF1b:11). In case
C, not until economical means of control were put into
place did development of the system-to-be-discontinued
stop (ICa:6), and in case D assignment of development



R. Land, I. Crnkovic / Information and Software Technology 49 (2007) 419–444 435
money to delivery projects is apparently not in line with
the long-term integration goals (IDa:3, IDb:6). ‘‘Projects
including costly project specific development are not pun-
ished. The laws of market economy are disabled’’. (IDa:3)
Case E1, a cooperation led by a research institute, can
serve as a counter-example. Here, enthusiasm apparently
was the driving force, and the lack of strict management
was even pointed out as contributing to success
(IE1:9,11). Although we agree it is essential to create a
good and creative team spirit [24], we believe it would
be bad advice to recommend weak or informal project
management, at least for larger projects.

Proposition 6.2 (Commitment). To succeed, all stakehold-

ers must be committed to the integration, and management

needs to show its commitment by allocating enough resources

(e.g., IF1b:11, IF1c:11).

In case F2 it was pointed out (based on negative expe-
rience) that for strategic work as integration is, one can-
not assign just anyone with some of the required skills;
the right (i.e. the best) people must be assigned, which
is a task for project management (IA:11, IF2b:11,
IF2d:9,11, IF2e:9,11). Realistic plans must be prepared,
and resources assigned in line with those plans
(IF1c:11). When directives and visions are not accompa-
nied with resources, integration will be fundamentally
questioned (IF1b:3, IF1c:6,9). When there is a lack of
resources, short-term goals tend to occupy the mind of
the people involved. The motivation for integrating is
to reduce some problems in the longer term rather than
producing some customer value, which means that (lack-
ing external pressure) the internal commitment becomes
more important than otherwise.

Proposition 6.3 (Cooperative grassroots). In order to suc-
ceed, the ‘‘grassroots’’ (i.e. the people who will actually do

the hard work) must be cooperative, both with management

and each other.

The people who will perform all the tasks required to
implement the integration plan are divided into two (or
more) physically separated groups, who may see each other
as a threat. It may be difficult to motivate people for tasks
that they feel are stealing time from their ordinary work,
and that even might undermine their employment. In case
D, the grassroots considered explicitly whether cooperation
was of benefit to themselves (IDb:6); they decided that for
cooperation to succeed they needed to show they were will-
ing to build trust, that they had no hidden agenda
(IDb:6,11). The overall goals must be made clear to the
grassroots to gain the necessary commitment and ‘‘buy-
in’’ (ICb:11, IF1b:11). The ‘‘not invented here syndrome’’
is dangerous for cooperation (IDb:6, IF1c:11). Case E1 illus-
trates that a project with ‘‘enthusiasm, lively discussions
and fun people’’ may drive the integration so that the need
for strict management project schedules is reduced (IE1:9);
what contributed most to success were the fun people and
the lack of strict management (IE1:11).
Proposition 6.4 (Make agreements and keep them). To be

able to manage and control a distributed organization formal

agreements must be made and honored.

In case F2, it was pointed out as a big problem that
requirements and design evolved driven by implementation
(IF2b:6, IF2c:9, IF2d:6,11). Even in the informally managed
case E1, the importance of agreeing on interface specifica-
tions and keeping them stable was emphasized (IE1:7,9).
When you do not meet the people you work with in person
very often, and there are local tasks on both sides that eas-
ily gets prioritized, more formalism than usual is required.
You must have agreements written down and then stick to
them (IF1c:9,11).

Proposition 6.5 (Common development environment). To
be able to cooperate efficiently, a common development

environment is needed (PF1b, IF2b:6,11, IF2e:11,12, IF2f:12).
With ‘‘development environment’’ we include, e.g., devel-
opment tools, platforms and version control systems. In
case F2, it was difficult to synchronize the efforts (IF2e:11);
e.g., source code was sent via email and merged manually
(IF2b:6). In case F1, the difficulties of accessing the other
site’s repository caused an unnecessarily long period of
(unknowing) parallel development (PF2b).
6.2. Suggested implementation process practices

The long time scale typically implied by integration gives
rise to the problem of keeping people motivated and man-
agement committed. There is a constant tension between
the local priorities of the existing systems and the long-term
goal of an integrated system. Without a minimum effort in
integration, the environment and the vision will change
more rapidly than the integration makes progress, which
means only a waste of resources. To address this, we
observed a number of practices:

Proposition 6.6 (Achieving momentum). Integration can-

not be sustained by external forces indefinitely, but mecha-

nisms must be put into place that provides internal converging

forces (e.g., IF2f:9).

If the Evolutionary Merge strategy is chosen, it must be
ensured that changes made to the systems are done in line
with the integration goal. These changes often compromise
the individual systems’ conceptual integrity, and moreover
often require more effort. The challenge is to identify and
implement internal converging forces, so that as changes
are made, it becomes more and more efficient to do other
changes that also contribute to the long-term Evolutionary

Merge; in this manner the integration will gain a certain
momentum [24] and partly drive itself. Such an internal con-
verging force could be the development and use of common
libraries that are superior in some way than the existing
ones (IF2e:7,12). The opposite would be when external forc-

es are constantly needed to achieve convergence, such as
heavy-weight procedures which’ purpose is not understood



436 R. Land, I. Crnkovic / Information and Software Technology 49 (2007) 419–444
by the developers. This will take a lot of energy from the
staff and the organization, will create stress and tension,
and may also lead to a recurring questioning about the pur-
pose of integration (IF1b:3,11, IF1c:6,9). One of the intervie-
wees in case F1 (which has not made significant measurable
progress during the 4 years that have passed since the com-
pany merger) asked ‘‘from where comes the driving force?’’
(IF1c:9), pointing at the fact that integration is not a goal in
itself. A balance between convergence and divergence must
be found; divergence could be allowed in order to develop
customer-specific systems in parallel, if there are mecha-
nisms that will enforce standardization and convergence
from time to time (IB:7,11,13). (These terms: converge,
diverge, driving force, momentum, were terms used by
many of the interviewees themselves).

Proposition 6.7 (Stepwise delivery). Ensure early use and

benefit of the value added in the transition process.

Typically, the vision lies far into the future, and integra-
tion processes are less predictable than other development
projects (IF2c:10,12). Maintaining the long-term focus with-
out monitoring and measuring progress is impossible
(IA:6,9, IB:1, IDa:12, IDb:6, IF1b:6, IF2c:6,11, IF2f:6). A
waterfall model might be inappropriate, as the system runs
the risk of not being feasible at time of delivery (IF1b:5,6);
there is a too long time to return of investment (IB:1).
Closely associated is the approach of a loosely integrated
system: an integration point should be found and all subse-
quent activities, although run as separate delivery projects,
will little by little make integration happen (IB:6,7,
IF1b:6,7,8,11; the proposed integration point in case F1
was a data storage format). There is however a tradeoff
to be made, as there are typically some common fundamen-
tal parts (such as infrastructure) that need to be built first
(PF1a, DF1a, IF2e:7). In contrast to development of new
products, or new product versions, these activities are per-
formed in parallel and often not considered the most
important. For these reasons the decisions regarding the
implementation process do not only depend on the process
itself, but also on many unrelated and unpredictable rea-
sons. Stepwise deliveries and prototyping have been used
for new development to increase process flexibility, could
be one way of achieving the desirable momentum. This
was also a recurring opinion among the interviewees, with
some variations:

• User value. Some of the interviewees maintained that
there must be a focus on deliveries that gives user value,
and a clearly identified customer (IB:1,7,11,13,
IF1b:6,11). If it is possible to utilize a customer delivery
to perform some of the integration activities, this will
be the spark needed to raise the priority, mobilize
resources, gaining commitment etc. (IF2c:6,11). Howev-
er, it should also be noted that customer delivery pro-
jects typically have higher priority than long-term
goals such as integration, and may subtract resources
and commitment from the implementation process.
The extreme would be to focus only on immediate needs,
questioning the need of integration at all (IF1b:3,11,
IF1c:6,9).

• Prototyping. The Start from Scratch strategy is essen-
tially new development, which is the typical situation
where prototyping would be a way of reducing risk;
in Case A, a prototype was developed as a way to
show an early proof of concept (IA:1,6,9,11). In the
case of Choose One, prototyping could mean making
a rapid throw-away extension of the selected system
to test how well it would replace the other(s). For a
Merge, prototyping would not mean so much demon-
strating functionality as investigating the technical
incompatibilities and some quality aspects of the
merged system. When merging the 3D simulators of
case F2, one internal release was planned where
robustness and performance was prioritized away, in
order to more rapidly understand how well the differ-
ent modules would fit together.

• Do something concrete. In some cases where it has been
difficult to formulate, or agree on, or commit to a vision,
the opinion has been raised that it is better to move on
and do something that is useful in the shorter term, e.g.,
implement some specific functionality that is useful for
both systems. This is then be used as a learning experi-
ence (IF2c:11, IF2f:6). However, there is also a potential
danger that implementation will drive requirements.
This happened in case F2 where requirements and
design evolved uncontrolled as implementation contin-
ued (IF2b:6, IF2c:9, IF2d:6,11); it would have been better
to either freeze the requirements or to use a development
model that is better suited to allow for constant changes
to requirements and design.

The practice of stepwise delivery implies that there will
be iterations between the vision process and the implemen-
tation process.

6.3. Considering implementation process in vision process

The characteristics of the implementation phase affects
the overall success of integration, and should be carefully
evaluated during the vision process. Although this must be
evaluated individually for any specific case, in general Merge

seems to be more complex than the Choose One and Start

from Scratch strategies. This is partly because these latter
strategies can be expressed in terms of retiring a system,
maintaining or evolving a single system, and developing
and deploying a new system, while a Merge is less familiar
to software organizations. Also, it seems that the risk mitiga-
tion tactics and process practices found become more impor-
tant in case of a Merge. This is partly because the
organization commits to a long-term distributed develop-
ment activity, while Choose One or Start from Scratch do
not inherently demand distributed development. In practice
they will however involve a certain amount of distributed
collaboration, e.g., to transfer knowledge and possibly staff.



R. Land, I. Crnkovic / Information and Software Technology 49 (2007) 419–444 437
With a Merge, it is also arguably more difficult to
‘‘achieve momentum’’ due to an ever-present tension
between focusing on long-term goals and short-term
goals, between global goals for the organization and
local for the previous self-standing departments in charge
of their system (this depends on how drastic the organi-
zational changes after a company merger have been).
Although this tension seems to always be present in
any software development or maintenance activities,
including the Choose One and Start from Scratch strate-
gies, Merge is more complex as it involves two systems
instead of one, two systems that need to be evolved
simultaneously and prioritized in the same manner. This
increases the importance of making formal agreements
(risk mitigation tactic ‘‘make agreements and keep
them’’) dramatically.

7. Resources, synchronization, backward compatibility

This section provides some observations on additional
issues that need to be considered during in-house integra-
tion, and explicitly analyzed during the vision process.
As for the section on retireability, the short descriptions
do not mean we consider these issues of little impor-
tance, only that they have not been in focus of our
research.

Availability of resources, such as time, money, people,
and skills, has a big influence on the choice of strategy.
Fundamentally, the architect and the organization must
ask whether a certain strategy can be afforded. Even if
the expected outcome would be a common, high-quality
system, the costs could simply be prohibitive. In case E2,
resource constraints resulted in some integration of two
existing systems, and the retirement of the third system
without replacement (IE2:13, DE2a).

The relation to other development activities must also be
considered. As integration has to be done in parallel with
the ordinary work within the organization, this often leads
in another direction (IF1a:9). There is a need to synchronize
all parallel development efforts within the company, other-
wise projects run too freely and ‘‘sub-optimal solutions’’
are created (IF1c:6).

Another issue that needs to be considered is the need
for some type of backward compatibility with the exist-
ing systems, for example by supporting existing data for-
mats or providing data migration mechanisms tools
(ICa:6, IF2a:5, PF1). Not only existing data but also exist-
ing user processes must be considered – in order to
achieve the rationalization goals of integration, it may
be necessary to require (some of) the users to change
their way of working (IF1b:3, IF3:6). Case F3 may serve
as a positive example where users understood and
accepted that they had to change their processes some-
what, and were willing to do this as they understood
the overall benefits of having a common system –
although they wanted to have the future system processes
as similar to their existing ones as possible (IF3:3).
8. Analysis

This section starts by summarizing the cases, arguing
that the concepts and terms introduced are useful to
explain the events in the cases (Section 8.1). We then sug-
gest a procedure for exploring and evaluating different
strategies, synthesizing the observations of the different
selection criteria discussed separately in previous sections
(Section 8.2).

8.1. Strategy exclusion and selection in the cases

Table 4 summarizes which strategies are excluded
according to our reasoning in this paper, based on Table
2 and our interpretation of the cases. Exclusion is marked
with black, with a question mark where the classification is
open for discussion; we have chosen to show the interpre-
tation that could falsify our proposed scheme, i.e. exclud-
ing the most strategies. In case C retireability was clearly
renegotiated, and in case C and F1 the decision changed,
illustrated with multiple entries for these cases showing
these iterations. There are also entries for the constituent
components of cases D and F2, where the Merge strategy
was chosen and currently implemented. A check mark indi-
cates which strategy was finally selected and implemented
(cases A, B, C (final), DHMI, E1, E2, F2Pre, F2Post, and
F3), or desired (for the cases not yet finished, indicated
with an asterisk, and for cases C and F1 where the decision
was later changed).

As the tables visualize, Choose One or Start from
Scratch was chosen in favor of Evolutionary Merge when-
ever possible in the cases; the only case where Evolutionary

Merge was chosen was when there was no other option
(case F23D). This supports our reasoning that Merge is per-
ceived as the most difficult strategy to implement. Out of
the six rows where both Choose One and Start from Scratch

remained, Start from Scratch was chosen in five, which
might indicate a common wish to take the opportunity in
this situation for a complete remake and invest in a new
generation of the system(s).

As compatibility is not re-negotiable, and has such
profound impact on the possible integration strategies,
it must be carefully evaluated and communicated prior
to a decision. Obvious as this may sound, the cases illus-
trate that this is not always the case. In case C, manage-
ment insisted on an Rapid Merge, although considered
impossible by the architects (ICa:6, ICb:6) resulting in sev-
eral hundred person-years being lost. In case F1 an Evo-

lutionary Merge was decided upon because the systems
could not be retired, even though the systems were
incompatible (IF1c:6, DF1a, PF1a), resulting in no progress
after 4 years of work. The decisions were, when consid-
ered in isolation, perfectly understandable: it is easier to
not bother about the complexities associated with retiring
systems, and it is easier to assume that technicians can
merge the systems. This is a typical trade-off situation
with no simple solution.



Table 4
Summary of the possible and desired strategies in the cases

Each row denotes a case. There are multiple entries for case C and F1, to capture how evaluation and/or decision changed. There are also entries for the
constituent components of cases D and F2, where the Merge strategy was chosen and currently implemented. For each case, black denotes the strategies

438 R. Land, I. Crnkovic / Information and Software Technology 49 (2007) 419–444
It is of course equally important to evaluate the possibil-
ities of retiring the existing systems, but it is very difficult
for us as outsiders to evaluate whether the decisions in
the cases were good or bad, and we will avoid doing that.
We can nevertheless point at the fundamental problem
encountered when the existing systems are considered
impossible to retire, but are at the same time totally incom-
patible – there is simply no integration solution, as illus-
trated by case F1. Case C shows the same difficulty:
although the systems were somewhat compatible their
sheer size seemed to for all practical reasons exclude Evolu-

tionary Merge.

8.2. Suggested analysis procedure

All these observations taken together allow us to suggest
a checklist-based procedure for refining and evaluating a
number of alternatives. We are not proposing any particu-
lar order in which the strategies should be considered, nei-
ther of the activities suggested for each. The activities could
very well be carried out in any order, in parallel, or itera-
tively, continuously putting more effort into refining the
most crucial analyses in order to make as well-founded
decision as possible.

Starting at the highest level with existing systems X, Y,
Z, etc., the pros and cons of each strategy should be con-
sidered and documented.

• Start from Scratch

– Consider the impact of retiring all the existing systems.
(See Section 5.)
– Outline an implementation plan and consider the asso-
ciated cost and risk. This plan must include development
and deployment of the new system as well as the parallel



R. Land, I. Crnkovic / Information and Software Technology 49 (2007) 419–444 439
maintenance and eventual retirement of the existing sys-
tems. (See Section 6.)

• Choose One: Assuming that system X would be chosen,
do the following (then do the same assuming that the
other systems Y,Zetc. would be chosen):
– Consider the impact of retiring the other systems. (See
Section 5.)
– Estimate how well system X would replace the other
systems.
– Outline an implementation plan and consider the asso-
ciated cost and risk. This plan should include evolution
and deployment of system X as well as the parallel main-
tenance and eventual retirement of the other systems.
(See Section 6.)

• Merge: Identify incompatibilities, and if possible decom-
pose hierarchically:
– Compare the systems regarding at least (1) the high-
level structures and component roles, (2) the frame-
works, and (3) their data models. If they are similar,
decompose the system(s) into components, and repeat
the procedure for each pair of components aX from sys-
tem X, component aY from system Y, etc. Otherwise,
Merge is very likely the least cost-efficient integration
strategy. (See Section 4.)
– Outline an implementation plan and consider the asso-
ciated cost and risk. This plan should include stepwise
deliveries of the existing systems, and take into account
the parallel maintenance and evolution of the existing
systems. (See Section 6.) (We can note that the activities
suggested here are identical for both Evolutionary and
Rapid Merge; the only difference would be how much
time is estimated in the plans.)
For all of the strategies, also consider other things that

may influence the selection: resources, synchronization,
and backward compatibility (Section 7).

The result of this procedure will be a set of alternatives
of what the integrated system could look like, with associ-
ated benefits and drawbacks along many dimensions (the
features of the actual system, implementation time, cost
and risk, negative effects of retiring systems, etc.). When
following this procedure, some alternatives will likely be
immediately discarded (and it makes no sense to elaborate
those alternatives exhaustively in the first place). A trade-
off decision will be required to finally select the overall
optimal alternative, where expected pros and cons are
weighed against each other.

(It should be noted that we have by purpose avoided over-
specifying this procedure, as we believe there are many differ-
ent practices in different organizations, which might all be
applicable. We therefore do not want to mandate a certain
sequence of activities, neither do we want to formalize how
to assign weights or how to document the outcome.)

9. Related work

The insight that software evolves, and has to evolve, is
not new [11,62,72,73]. Software has to be extended in differ-
ent ways to keep up with evolving needs and expectations,
and interoperability and integration is one type of exten-
sion. However, the topic of in-house integration has not
been previously researched. In our previous literature sur-
vey [51], we found two classes of research on the topic of
‘‘software integration’’:

1. Basic research describing integration rather fundamen-
tally in terms of (a) interfaces [36,92,93], (b) architecture
[5,29,33], architectural mismatch [28], and architectural
patterns [12,27,81], and (c) information/taxonomies/da-
ta models [30,30,71,85]. These foundations are directly
applicable to the context of in-house integration.

2. There are three major fields of application: (a) Compo-
nent-Based Software Engineering [20,68,87,91], includ-
ing component technologies, (b) standard interfaces
and open systems [68,69], and (c) Enterprise Application
Integration (EAI) [21,79]. These existing fields address
somewhat different problems than in-house integration:
(i) Integration in these fields means that components
or systems complement each other and are assem-
bled into a larger system, while we consider sys-
tems that overlap functionally. The problem for
us is therefore not to assemble components into
one whole, but to take two (or more) whole sys-
tems and reduce the overlap to create one single
whole, containing the best of the previous systems.

(ii) These fields typically assume that components (or
systems) are acquired from external suppliers con-
trolling their development, meaning that modify-
ing them is not an option. We also consider
systems completely controlled in-house, and this
constraint consequently does not apply.

(iii) The goals of integration in these fields are to reduce
development costs and time, while not sacrificing
quality. In our context the goals are to reduce
maintenance costs (still not sacrificing quality).
There are also methods for merging source code [7,66],
and even architectural descriptions [89], The focus is on
merging development branches saved in version manage-
ment system. However, when integrating large systems
with complex requirements, functionality, quality, and
stakeholder interests, the abstraction level must be higher.
These approaches could possibly be useful when discussing
the Merge strategy, if the existing systems have very similar
structures.

As system evolves and ages, a common observation is
that they deteriorate, degrade, or erode [72,90]. Refactor-
ing relates to the systematic reorganization of the software
in order to improve the structure [26]. It is likely that the
existing systems in an in-house integration situation have
degraded somewhat, and that refactoring may be an addi-
tional activity for the Choose One strategy, or prior to a
Merge.

Software architecture is defined in academia in terms of
‘‘components’’ (or ‘‘entities’’) and ‘‘connectors’’ [5,29,74],
which is possible to formalize [1,3] and have resulted in cat-



440 R. Land, I. Crnkovic / Information and Software Technology 49 (2007) 419–444
alogues of generally useful structural patterns [12,27,81]. We
have adopted this structural perspective in the present work,
but also believe there is more to software architecture than
structure: we saw frameworks (in the sense ‘‘environment
defining components’’) and data models as sources of
(high-level) incompatibilities. A software architect is typical-
ly concerned with much more than structural diagrams and
formalisms, and is often considered being the person who
understands the language and concerns of other stakehold-
ers [83,94], and/or the person who monitors and decides
about all changes being made to the system to ensure concep-
tual integrity and avoid deterioration [72,90]. We believe
many of tasks outlined in the present paper matches this
job description well. The field of Component-Based Soft-
ware Engineering is closely related, with focus on how to
build systems from pre-existing components [20,87,91].

There are several proposed methods for architectural
analysis, such as the Architecture Trade-Off Analysis
Method (ATAM) and the Cost-Benefit Analysis Method
(CBAM) [15]. Although primarily designed to be used dur-
ing new development, they have been used during system
evolution [15,42,44], and could very well be used to evalu-
ate alternatives of a future integrated system.

Closely related to our description of architectural com-
patibility is the seminal ‘‘architectural mismatch’’ paper,
which points out issues to be assessed as part of the archi-
tectural compatibility [28]. The ‘‘composability’’ of compo-
nents views a similar problem from the view of
components, which need to be interoperable and comple-
mentary to be composable [67]. Also related to assessing
architectural compatibility are architectural documenta-
tion good practices [16,33,37].

For new development, there are a number of estab-
lished software development models: the traditional
sequential waterfall model with different variants [65],
iterative, incremental, and evolutionary models [8,65],
the commercially marketed Rational Unified Process
(RUP) [46] and recently agile methodologies [6,84]. There
is a body of research specifically covering the context of
distributed software teams [13,14,32,43], although not
concerning the specifics of in-house integration. There
are also literature covering good practices, some of which
overlap with our practices extracted from the cases (e.g.,
on commitment [2]). The most well-known compilation
of so-called best practices for software development in
general is arguably the Capability Maturity Model Inte-
grated (CMMI) [17]. However, the main focus of the
available knowledge is new development, and to some
extent other activities such as evolution, maintenance
[4], deployment, and product integration [61]. There is
some research also in non-classical new development
models related to in-house integration, such as compo-
nent-based development processes [19,38,91], and con-
cerning reuse [40,76]. Although there is certainly some
overlap, the existing literature cannot be directly applied
to in-house integration, where we have seen that Merge

in particular is difficult to formulate in terms of existing
processes, and that the vision process itself contains some
elements unique to in-house integration.

Many issues are not purely technical but require insight
into business, and many decisions require awareness of he
organization’s overall strategies. Strategic planning (and
strategic management) is known from business manage-
ment as a tool for this kind of reasoning, that is to system-
atically formulate the goals of the organization and
compare with the current and forecasted environment,
and take appropriate measures to be able to adapt (and
possibly control) the environmental changes [18,88]. In
our case, investigating retireability clearly fits within the
framework of strategic planning, by explicitly considering
the money already invested, existing (dis)satisfaction, risk
of future dissatisfaction, estimated available resources,
and weigh this based on the perceived possible futures. In
fact, the whole process we have described, and perhaps
much of an architect’s activities should be cast in terms
of strategic planning such as the PESTEL framework or
the Porter Five Forces framework [75]. (It should perhaps
be noted that our term ‘‘integration strategy’’ is a plan,
which is not synonymous to a company strategy in the
sense of strategic planning.)

10. Summary

In-house integration is a complex and difficult undertak-
ing, which might nonetheless be absolutely necessary for an
organization as its software systems are evolved and grow,
or after company mergers and acquisitions. This topic has
not yet been addressed in research, so the proper starting
point is a qualitative study. This paper presents a multiple
case study consisting of nine cases in six organizations,
where the data sources include interviews (in all cases),
documentation (in four cases), and participation (in one
case). The organizations and systems are of different types
and sizes, ranging from a maintenance and development
staff of a few people to several hundred people, and all have
a significant history of development and maintenance. The
domains of the systems included safety-critical systems
(two cases), physics simulations (three cases) and different
types of data management (four cases). We consciously
avoided pure enterprise information systems as there are
existing interconnectivity solutions for this domain
(although we believe our findings are applicable also to that
domain). Based on the cases we suggest that the integration
activities should be considered as two processes: a vision
process and an implementation process.

Certain recurring practices for the vision process were
identified in the cases, needed because of some of the charac-
teristics of in-house integration: typically no single person in
the organization knows all the existing systems well. Since it
is a big and long-term commitment risk must be reduced by
involving the right people at the right point in time, in order
to have a sufficient basis for making a good decision, while
making the evaluation as rapidly as possible. The practices
found have been labeled Small evaluation group, Collect



R. Land, I. Crnkovic / Information and Software Technology 49 (2007) 419–444 441
experience from existing systems, Improve the current state,
Timely decisions, and Sufficient analysis.

The goal of the vision process is to select a high-level strat-
egy for the integration. We have named the extreme alterna-
tives Start from Scratch, Choose One, and Merge. To
evaluate the possibilities of a tight Merge, the architectural
compatibility of the systems must be evaluated. The findings
in the cases strongly suggest that the high-level structures of
the existing systems must be similar for a Merge to be possi-
ble. Fortunately, we have found that within a domain it is not
unreasonable to expect the systems to have similar structures
due to standards (formal or de facto standards). If the struc-
tures at a high level are similar (e.g., client–server), it
becomes possible to hierarchically decompose the system
by looking into each pair of components (i.e. the clients
and servers separately) and considering whether their inter-
nal structures are similar enough to enable picking compo-
nents. The framework in which the system is implemented,
in the sense ‘‘environment defining components’’ also must
be similar, which again is not uncommon among systems
built in the same era in the same domain. The other major
source of incompatibilities in the cases was differences in
the data model. The Merge strategy can be subdivided into
two types, Rapid and Evolutionary, distinguished by the time
required to merge. Based on our cases, although Rapid

Merge is sometimes demanded by management, it is typically
considered unrealistic by the technicians who understand the
architectural incompatibilities better. This is a lesson to con-
sider in future projects, the danger of management underes-
timating the technical difficulties.

There are clearly many other things to evaluate. Our
observations also include a focused evaluation of the impli-
cations of retiring some or all of the existing systems, from
many stakeholders’ points of view; this may exclude some
strategies. The cost of the different integration strategies
is clearly an important influence, the relation to other activ-
ities in the organization, how to transfer or support existing
data, and how user processes will change. Not only the
future system as such must be considered when choosing
a strategy, but also the implementation process. The imple-
mentation process depends heavily on the strategy, so that
the activities needed for Merge will be considerably differ-
ent from the retirement and evolution activities of Choose

One and Start from Scratch. A Merge will involve a long-
term synchronization of two parallel systems, and requires
stepwise deliveries and some means of achieving momen-
tum in the evolution of the existing systems, in order to
make them converge. For many organizations, these
aspects are more unknown than to retire some systems
and/or evolve or develop a new system, and so it appears
as Merge is the most difficult. The trend among our cases
is also that Start from Scratch was preferred over Choose

One, which was preferred over Merge. There is also the
choice of No Integration which has no direct costs, but of
course brings no integration benefits – however this may
be the best option is the costs and risks of integration is
high and the expected benefit is low.
All this taken together suggests that in-house integration
is a difficult endeavor, which is also shown by the events in
the cases. Reality is always richer and more complex than
any systematic description or abstraction. Nevertheless,
we believe we have provided a set of concepts that are use-
ful for describing and explaining many of the events in the
cases, and also being useful for future in-house integration
efforts, to minimize the risk of insufficient analysis and ill-
founded decisions.

10.1. Future work

Since this work can be considered qualitative research to
create theory, validating and quantifying these results using
more cases is a natural continuation. This is currently done
with a questionnaire survey distributed to the same and
other cases [60], and we expect this data collection to con-
tinue for a while.

We also want to penetrate some of the topics fur-
ther, and are especially interested in high-level and
rapid reasoning about compatibility, i.e. at the architec-
tural level. We intend to research the Merge strategy
further and are currently following up case F2 in order
to develop a method and a tool [49,56] for supporting
rapid exploration of different Merge alternatives and
evaluate them.

The available knowledge within an organization would
also be an important input to the decisions made deserve
further studies; for example, merging and reusing systems
are less feasible options if (either of) the systems are not
properly documented and the original architects have left
the organization.

We also welcome studies of this topic focusing less on
technical factors and more on other factors such as man-
agement, cultures and psychology, and ethical dilemmas
such as how to handle staff in a stressing situation when
retiring a system. We believe there is much knowledge to
collect in these fields and synthesize with the more technical
point of view put forward in this article.

Acknowledgments

We would like to thank all interviewees and their orga-
nizations for sharing their experiences and allowing us to
publish them. Thanks also to thank Stig Larsson and Lau-
rens Blankers for all cooperation during the research that
has led to this paper.

Appendix. Interview questions

1. Describe the technical history of the systems that
were integrated: e.g., age, number of versions, size
(lines of code or other measure), how was function-
ality extended, what technology changes were
made? What problems were experienced as the sys-
tem grew?



442 R. Land, I. Crnkovic / Information and Software Technology 49 (2007) 419–444
2. Describe the organizational history of the systems.
For example, were they developed by the same orga-
nization, by different departments within the same
organization, by different companies? Did ownership
change?

3. What were the main reasons to integrate? For exam-
ple, to increase functionality, to gain business advan-
tages, to decrease maintenance costs? What made you
realize that integration was desirable/ needed?

4. At the time of integration, to what extent was source
code the systems available, for use, for modifications,
etc.? Who owned the source code? What parts were,
e.g., developed in-house, developed by contractor,
open source, commercial software (complete systems
or smaller components)?

5. Which were the stakeholders of the previous sys-
tems and of the new system? What were their main
interests of the systems? Please describe any
conflicts.

6. Describe the decision process leading to the choice of
how integration? Was it done systematically? Were
alternatives evaluated or was there an obvious way
of doing it? Who made the decision? Which underly-
ing information for making the decision was made
(for example, were some analysis of several possible
alternatives made)? Which factors were the most
important for the decision (organizational, market,
expected time of integration, expected cost of integra-
tion, development process, systems structures (archi-
tectures), development tools, etc.)?

7. Describe the technical solutions of the integration.
For example, were binaries or source code wrapped?
How much source code was modified? Were interfac-
es (internal and/or external) modified? Were any pat-
terns or infrastructures (proprietary, new or
inherited, or commercial) used? What was the size
of the resulting system?

8. Why were these technical solutions (previous ques-
tion) chosen? Examples could be to decrease com-
plexity, decrease source code size, to enable certain
new functionality.

9. Did the integration proceed as expected? If it was it
more complicated than expected, how did it affect
the project/product? For example, was the project
late or cost more than anticipated, or was the product
of less quality than expected? What were the reasons?
Were there difficulties in understanding the existing
or the resulting system, problems with techniques,
problems in communication with people, organiza-
tional issues, different interests, etc.?

10. Did the resulting integrated system fulfill the expec-
tations? Or was it better than expected, or did not
meet the expectations? Describe the extent to which
the technical solutions contributed to this. Also
describe how the process and people involved con-
tributed – were the right people involved at the
right time, etc.?
11. What is the most important factor for a successful
integration according your experiences? What is the
most common pitfall?

12. Have you changed the way you work as a result of
the integration efforts? For example, by consciously
defining a product family (product line), or some
components that are reused in many products?

References

[1] G.D. Abowd, R. Allen, D. Garlan, Using style to understand
descriptions of software architecture, in: Proceedings of The First
ACM SIGSOFT Symposium on the Foundations of Software
Engineering, 1993.

[2] P. Abrahamsson, The Role of Commitment in Software Process
Improvement, Ph.D. Thesis, Department of Information Processing
Science, University of Oulu, 2005.

[3] R. Allen, A Formal Approach to Software Architecture, Ph.D.
Thesis, Carnegie Mellon University, Technical Report Number:
CMU-CS-97-144, 1997.

[4] A. April, J. Huffman Hayes, A. Abran, R. Dumke, Software
Maintenance Maturity Model (SMmm): the software maintenance
process model, Journal of Software Maintenance and Evolution:
Research and Practice 17 (3) (2005) 197–223.

[5] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice,
second ed., Addison-Wesley, 2003, ISBN 0-321-15495-9.

[6] K. Beck, EXtreme Programming EXplained: Embrace Change,
Addison Wesley, 1999, ISBN 0201616416.

[7] V. Berzins, Software merge: semantics of combining changes to
programs, ACM Transactions on Programming Languages and
Systems (TOPLAS) 16 (6) (1994) 1875–1903.

[8] B. Boehm, Spiral Development: Experience, Principles and Refine-
ments, CMU/SEI-2000-SR-008, Software Engineering Institute, Car-
negie Mellon University, 2000.

[9] B. Boehm, R. Turner, Using risk to balance agile and plan-driven
methods, IEEE Computer 36 (6) (2003) 57–66.

[10] M.L. Brodie, M. Stonebraker, Migrating Legacy Systems: Gateways,
Interfaces and the Incremental Approach, Morgan Kaufmann Series
in Data Management Systems, Morgan Kaufmann, 1995. ISBN
1558603301.

[11] F.P. Brooks, No silver bullet, in: The Mythical Man-Month – Essays
On Software Engineering, 20th Anniversary ed., Addison-Wesley
Longman, 1995, ISBN 0201835959.

[12] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal,
Pattern-Oriented Software Architecture – A System of Patterns, John
Wiley & Sons, 1996, ISBN 0-471-95869-7.

[13] E. Carmel, Global Software Teams – Collaborating Across Borders
and Time Zones, Prentice-Hall, 1999, ISBN 0-13-924218-X.

[14] E. Carmel, R. Agarwal, Tactical approaches for alleviating distance
in global software development, IEEE Software 18 (2) (2001) 22–
29.

[15] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R.
Nord, J. Stafford, Evaluating Software Architectures, Addison-
Wesley, 2001, ISBN 0-201-70482-X.

[16] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R.
Nord, J. Stafford, Documenting Software Architectures: Views and
Beyond, Addison-Wesley, 2002, ISBN 0-201-70372-6.

[17] CMMI Product Team, Capability Maturity Model� Integration
(CMMI SM), Version 1.1, CMU/SEI-2002-TR-011, Software Engi-
neering Institute (SEI), 2002.

[18] H. Courtney, 20j20 Foresight: Crafting Strategy in an Uncertain
World, Harvard Business School Press, 2001, ISBN 1-57851-266-2.

[19] I. Crnkovic, Component-based software engineering – new challenges
in software development, in: Software Focus, John Wiley & Sons,
2001.



R. Land, I. Crnkovic / Information and Software Technology 49 (2007) 419–444 443
[20] I. Crnkovic, M. Larsson, Building Reliable Component-Based
Software Systems, Artech House, 2002, ISBN 1-58053-327-2.

[21] F.A. Cummins, Enterprise Integration: An Architecture for Enter-
prise Application and Systems Integration, John Wiley & Sons, 2002,
ISBN 0471400106.

[22] L. Davis, D. Flagg, R.F. Gamble, C. Karatas, Classifying interop-
erability conflicts, in: Proceedings of Second International Conference
on COTS-Based Software Systems, LNCS 2580, Springer-Verlag,
2003, pp. 62–71.

[23] L. Davis, R. Gamble, J. Payton, G. Jónsdóttir, D. Underwood, A
Notation for Problematic Architecture Interactions, ACM SIGSOFT
Software Engineering Notes 26 (5) (2001).

[24] T. DeMarco, T. Lister, Peopleware: Productive Projects and Teams,
second ed., Dorset House Publishing, 1999, ISBN 0-932633-43-9.

[25] E.H. Ferneley, Design metrics as an aid to software maintenance: an
empirical study, Journal of Software Maintenance: Research and
Practice 11 (1) (1999) 55–72.

[26] M. Fowler, Refactoring: Improving the Design of Existing Code,
Addison-Wesley, 1998, ISBN 0201485672.

[27] E. Gamma, R. Helm, R. Johnson, J. Vlissidies, Design Patterns –
Elements of Reusable Object-Oriented Software, Addison-Wesley,
1995, ISBN 0-201-63361-2.

[28] D. Garlan, R. Allen, J. Ockerbloom, Architectural Mismatch: Why
Reuse is so Hard, IEEE Software 12 (6) (1995) 17–26.

[29] D. Garlan, M. Shaw, An introduction to software architecture,
Advances in Software Engineering and Knowledge Engineering vol. I
(1993).

[30] N. Guarino, Formal Ontology in Information Systems, IOS Press,
1998, ISBN 9051993994.

[31] M.H. Halstead, Elements of Software Science, Operating, and
Programming Systems Series, Elsevier, 1977.

[32] J.D. Herbsleb, D. Moitra, Global software development, IEEE
Software 18 (2) (2001) 16–20.

[33] C. Hofmeister, R. Nord, D. Soni, Applied Software Architecture,
Addison-Wesley, 2000, ISBN 0-201-32571-3.

[34] G. Hofstede, Cultures and Organizations: Software of the Mind,
second ed., McGraw-Hill, 2004, ISBN 0071439595.

[35] G. Hohpe, B. Woolf, Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions, Pearson Education,
2004, ISBN 0321200683.

[36] IEEE, IEEE Standard Glossary of Software Engineering Terminol-
ogy, IEEE, 1990. IEEE Std 610.12-1990.

[37] IEEE Architecture Working Group, IEEE Recommended Practice
for Architectural Description of Software-Intensive Systems, IEEE,
2000. IEEE Std 1471-2000.

[38] L. Jakobsson, B. Christiansson, I. Crnkovic, Component-based
development process, in: I. Crnkovic, M. Larsson (Eds.), Building
Reliable Component-Based Software Systems, Artech House, 2002,
ISBN 1-58053-327-2.

[39] P. Johnson, Enterprise Software System Integration – An Architectural

Perspective, Ph.D. Thesis, Industrial Information and Control Sys-
tems, Royal Institute of Technology, 2002.

[40] E.-A. Karlsson, Software Reuse: A Holistic Approach, Wiley Series in
Software Based Systems, John Wiley & Sons Ltd., 1995. ISBN 0 471
95819 0.

[41] D.W. Karolak, Global Software Development – Managing Virtual
Teams and Environments, IEEE Computer Society, 1998, ISBN 0-
8186-8701-0.

[42] R. Kazman, M. Barbacci, M. Klein, J. Carriere, Experience with
performing architecture tradeoff analysis method, in: Proceedings of
The International Conference on Software Engineering, New York,
1999, pp. 54–63.

[43] S. Komi-Sirviö, M. Tihinen, Lessons learned by participants of
distributed software development, Knowledge and Process Manage-
ment 12 (2) (2005) 108–122.

[44] M. Korhonen, T. Mikkonen, Assessing systems adaptability to a
product family, in: Proceedings of International Conference on
Software Engineering Research and Practice, CSREA Press, 2003.
[45] G. Kotonya, I. Sommerville, Requirements Engineering: Processes
and Techniques, John Wiley & Sons, 1998, ISBN 0471972088.

[46] P. Kruchten, The Rational Unified Process: An Introduction, second
ed., Addison-Wesley, 2000, ISBN 0-201-70710-1.

[47] C.W. Krueger, Software reuse, ACM Computing Surveys 24 (2)
(1992) 131–183.

[48] R. Land, L. Blankers, S. Larsson, I. Crnkovic, Software systems in-
house integration strategies: merge or retire – experiences from
industry, in: Proceedings of Software Engineering Research and
Practice in Sweden (SERPS), 2005.

[49] R. Land, J. Carlson, I. Crnkovic, S. Larsson, A method for exploring
software systems merge alternatives, in: Proceedings of submitted to
Quality of Software Architectures (QoSA) (will otherwise be pub-
lished as a technical report, the paper can be found at
<www.idt.mdh.se/~rld/temp/MergeMethod.pdf>), 2006.

[50] R. Land, I. Crnkovic, Software systems integration and architectural
analysis – a case study, in: Proceedings of International Conference
on Software Maintenance (ICSM), IEEE, 2003.

[51] R. Land, I. Crnkovic, Existing approaches to software integration –
and a challenge for the future, in: Proceedings of Software Engineer-
ing Research and Practice in Sweden (SERPS), Linköping University,
2004.

[52] R. Land, I. Crnkovic, S. Larsson, Concretizing the vision of a future
integrated system – experiences from industry, in: Proceedings of 27th
International Conference Information Technology Interfaces (ITI),
IEEE, 2005.

[53] R. Land, I. Crnkovic, S. Larsson, L. Blankers, Architectural concerns
when selecting an in-house integration strategy – experiences from
industry, in: Proceedings of 5th IEEE/IFIP Working Conference on
Software Architecture (WICSA), IEEE, 2005.

[54] R. Land, I. Crnkovic, S. Larsson, L. Blankers, Architectural reuse in
software systems in-house integration and merge – experiences from
industry, in: Proceedings of First International Conference on the
Quality of Software Architectures (QoSA), Springer, 2005.

[55] R. Land, I. Crnkovic, C. Wallin, Integration of software systems –
process challenges, in: Proceedings of Euromicro Conference, 2003.

[56] R. Land, M. Lakotic, A tool for exploring software systems merge
alternatives, in: Proceedings of International ERCIM Workshop on
Software Evolution, 2006.

[57] R. Land, S. Larsson, I. Crnkovic, Interviews on Software Integration,
MRTC report ISSN 1404-3041 ISRN MDH-MRTC-177/2005-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen University,
2005.

[58] R. Land, S. Larsson, I. Crnkovic, Processes patterns for software
systems in-house integration and merge – experiences from industry,
in: Proceedings of 31st Euromicro Conference on Software Engineer-
ing and Advanced Applications (SEAA), Software Process and
Product Improvement track (SPPI), 2005.

[59] R. Land, P. Thilenius, S. Larsson, I. Crnkovic, A Quantitative Survey
on Software In-house Integration, MRTC report ISSN xxx-xxx ISRN
MDH-MRTC-xxx (before formal publication and assignment of
ISSN/ISRN, it is available at: <www.idt.mdh.se/~rld/temp/
survey_tr.pdf>), Mälardalen Real-Time Research Centre, Mälardalen
University, 2006.

[60] R. Land, P. Thilenius, S. Larsson, I. Crnkovic, Software in-house
integration – quantified experiences from industryProceedings of
32nd Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), Software Process and Product Improvement
track (SPPI), IEEE, 2006.

[61] S. Larsson, I. Crnkovic, Case study: software product integration
practices, in: Proceedings of 6th International Conference on Product
Focused Software Process Improvement (PROFES), Springer, 2005.

[62] M.M. Lehman, J.F. Ramil, Rules and tools for software evolution
planning and management, Annals of Software Engineering 11 (1)
(2001) 15–44.

[63] D.S. Linthicum, Enterprise Application Integration, Addison-Wesley
Information Technology Series, Addison-Wesley, 1999. ISBN
0201615835.

http://www.idt.mdh.se/~rld/temp/MergeMethod.pdf
http://www.idt.mdh.se/~rld/temp/survey_tr.pdf
http://www.idt.mdh.se/~rld/temp/survey_tr.pdf


444 R. Land, I. Crnkovic / Information and Software Technology 49 (2007) 419–444
[64] A. Maxwell Joseph, Understanding and validity in qualitative
research, Harvard Educational Review 62 (3) (1992) 279–300.

[65] S. McConnell, Rapid Development, Taming Wild Software Sched-
ules, Microsoft Press, 1996, ISBN 1-55615-900-5.

[66] T. Mens, A state-of-the-art survey on software merging, IEEE
Transactions on Software Engineering 28 (5) (2002) 449–462.

[67] D.G. Messerschmitt, C. Szyperski, Software Ecosystem: Understand-
ing an Indispensable Technology and Industry, MIT Press, 2003,
ISBN 0-262-13432-2.

[68] C. Meyers, P. Oberndorf, Managing Software Acquisition: Open
Systems and COTS Products, Addison-Wesley, 2001, ISBN
0201704544.

[69] C. Meyers, T. Oberndorf, Open Systems: The Promises and the
Pitfalls, Addison-Wesley, 1997, ISBN 0-201-70454-4.

[70] P. Oman, J. Hagemeister, D. Ash, A Definition and Taxonomy for
Software Maintainability, SETL Report 91-08-TR, University of
Idaho, 1991.

[71] B. Omelayenko, Integration of product ontologies for B2B
marketplaces: a preview, ACM SIGecom Exchanges 2 (1) (2000)
19–25.

[72] D.L. Parnas, Software aging, in: Proceedings of the 16th Interna-
tional Conference on Software Engineering, IEEE Press, 1994, pp.
279–287.

[73] D.E. Perry, Laws and principles of evolution, in: Proceedings of
International Conference on Software Maintenance (ICSM), IEEE,
2002, p. 70.

[74] D.E. Perry, A.L. Wolf, Foundations for the study of software
architecture, ACM SIGSOFT Software Engineering Notes 17 (4)
(1992) 40–52.

[75] M.E. Porter, Competitive Strategy: Techniques for Analyzing Indus-
tries and Competitors, Free Press, 1998, ISBN 0684841487.

[76] J.S. Poulin, Measuring Software Reuse: Principles, Practices,
and Economic Models, Addison-Wesley, 1997, ISBN 0-201-
63413-9.

[77] C. Robson, Real World Research, second ed., Blackwell Publishers,
2002, ISBN 0-631-21305-8.

[78] N. Rozanski, E. Woods, Software Systems Architecture: Working
with Stakeholders Using Viewpoints and Perspectives, Addison-
Wesley, 2005, ISBN 0-321-11229-6.

[79] W.A. Ruh, F.X. Maginnis, W.J. Brown, Enterprise Application
Integration, A Wiley Tech Brief, John Wiley & Sons, 2000, ISBN
0471376418.
[80] K. Rönkkö, Making Methods Work in Software Engineering:
Method Deployment – as a Social Achievement, Ph.D. Thesis,
Blekinge Institute of Technology, 2005.

[81] D. Schmidt, M. Stal, H. Rohnert, F. Buschmann, Pattern-Oriented
Software Architecture – Patterns for Concurrent and Networked
Objects, Wiley Series in Software Design Patterns, ISBN 0-471-60695-
2, John Wiley & Sons Ltd., 2000.

[82] B. Seaman, Qualitative methods in empirical studies of software
engineering, IEEE Transactions on Software Engineering 25 (4)
(1999) 557–572.

[83] M.T. Sewell, L.M. Sewell, The Software Architect’s Profession – An
Introduction, Software Architecture Series, Prentice Hall PTR, 2002.
ISBN 0-13-060796-7.

[84] J. Stapleton, DSDM – Dynamic Systems Development Method,
Pearson Education, 1997, ISBN 0-201-17889-3.

[85] M. Stonebraker, J.M. Hellerstein, Content integration for E-business,
ACM SIGMOD Record 30 (2) (2001) 552–560.

[86] A. Strauss, J.M. Corbin, Basics of Qualitative Research: Techniques
and Procedures for Developing Grounded Theory, second ed., Sage
Publications, 1998, ISBN 0803959400.

[87] C. Szyperski, Component Software – Beyond Object-Oriented Pro-
gramming, second ed., Addison-Wesley, 2002, ISBN 0-201-74572-0.

[88] A.A. Thompson Jr., A.J. Strickland III, Strategic Management:
Concepts and Cases, 11th ed., Irwin/McGraw-Hill, 1999, ISBN 0-07-
303714-1.

[89] C. van der Westhuizen, A. van der Hoek, Understanding and
propagating architectural change, in: Proceedings of Third Working
IEEE/IFIP Conference on Software Architecture 2002 (WICSA 3),
Kluwer Academic Publishers, 2002, pp. 95–109.

[90] J. van Gurp, J. Bosch, Design erosion: problems and causes, Journal
of Systems & Software 61 (2) (2002) 105–119.

[91] K.C. Wallnau, S.A. Hissam, R.C. Seacord, Building Systems from
Commercial Components, Addison-Wesley, 2001, ISBN 0-201-70064-
6.

[92] P. Wegner, Interoperability, ACM Computing Surveys 28 (1) (1996).
[93] J.C. Wileden, A. Kaplan, Software interoperability: principles and

practice, in: Proceedings of 21st International Conference on
Software Engineering, ACM, 1999, pp. 675–676.

[94] WWISA, Worldwide Institute of Software Architects, URL: <http://
www.wwisa.org>, 2002.

[95] R.K. Yin, Case Study Research: Design and Methods, third ed., Sage
Publications, 2003, ISBN 0-7619-2553-8.

http://www.wwisa.org
http://www.wwisa.org

	Software systems in-house integration: Architecture, process practices, and strategy selection
	Introduction
	Research relevance and scope
	The big picture
	The present paper

	Research method
	Limitations
	The cases
	Case F2: off-line physics simulation
	Other cases


	Vision process
	The goal of the vision process
	Suggested vision process practices

	Architectural compatibility
	What software artifacts can be reused?
	Possible basic types of reuse in software merge
	Observations concerning reuse in the cases
	Architectural compatibility as part of the vision process

	Retireability
	Observations from the cases
	Retireability as part of the vision process

	Implementation process
	Suggested risk mitigation tactics
	Suggested implementation process practices
	Considering implementation process in vision process

	Resources, synchronization, backward compatibility
	Analysis
	Strategy exclusion and selection in the cases
	Suggested analysis procedure

	Related work
	Summary
	Future work

	Acknowledgments
	Interview questions
	References


