

 i

Abstract

Software evolution is a crucial activity for software organizations. A specific
type of software evolution is the integration of previously isolated systems.
The need for integration is often a consequence of different organizational
changes, including merging of previously separate organizations. One goal
of software integration is to increase the value to users of several systems by
combining their functionality, another is to reduce functionality overlap. If
the systems are completely owned and controlled in-house, there is an
additional advantage in rationalizing the use of internal resources by
decreasing the amount of software with essentially the same purpose.
Despite in-house integration being common, this topic has received little
attention from researchers. This thesis contributes to an increasing
understanding of the problems associated with in-house integration and
provides guidelines to the more efficient utilization of the existing systems
and the personnel.
In the thesis, we combine two perspectives: software architecture and
processes. The perspective of software architecture is used to show how
compatibility analysis and development of integration alternatives can be
performed rapidly at a high level of abstraction. The software process
perspective has led to the identification of important characteristics and
practices of the integration process. The guidelines provided in the thesis
will help those performing future in-house integration to make well-founded
decisions timely and efficiently.
The contributions are based on several integration projects in industry,
which have been studied systematically in order to collect, evaluate and
generalize their experiences.

ii

 iii

Included Papers

This thesis includes six peer-reviewed research papers, published at
international journals, conferences and workshops. The papers are
introduced presented in section 2.4 (page 18), with my individual
contribution clearly indicated, and reprinted in full (page 107 and forward).

iv

 v

Acknowledgements

There are many people I wish to thank for their part in this thesis coming
into being during the past five years. To do so without yielding to
sentimentality – which is not appropriate at all for an aspiring researcher – I
will summarize these five years in objective numbers:
1 supervisor (thanks Ivica!),
1 tool implementation (thanks to Mathias Alexandersson, Sebastien

Bourgeois, Marko Buražin, Mladen Čikara, Miroslav Lakotić,
Lei Liu, and Marko Pecić),

2 participations in industrial projects, around two man-months each
(thanks to the unnamed company and my colleagues there),

2 ½ children (thanks to Cecilia for delivering them, and thanks to
Selma, Sofia and Kuckelimuck for giving my life some meaning
that is not so easily caught in numbers),

6 months stay at FER (Faculty of Electrical Engineering and
Computing) at the University of Zagreb (thanks to Prof. Mario
Žagar and my room mates Damir Bartolin, Tomislav Čurin,
Marin Orlić, also to Igor Čavrak for all collaboration),

20 published research papers and 4 technical reports (thanks to my
fellow authors for pleasant cooperation: Laurens Blankers, Jan
Carlson, Ivica Crnković, Igor Čavrak, Erik Gyllenswärd, Mladen
Kap, Miroslav Lakotić, Johan Fredriksson, Stig Larsson, Peter
Thilenius, Christina Wallin, Mario Žagar, Mikael Åkerholm),

23 formal interviews with people in industry, plus an unknown
number of informal talks (thanks to all interviewees and their
organizations),

31.5 years of experience from living (thanks to everyone involved in
making life mostly a pleasant experience, and thanks also to
whoever was involved in giving life to me in the first place – I
am sure I did not deserve it),

vi

1,500 (estimated number) cups of tea, coffee and kava sa šlagom at

MdH/IDE (Department of Computer Science and Electronics at
Mälardalen University) and FER (thanks to everyone who joined
for nice chats, especially my colleagues at the Software
Engineering Lab and some unnamed persons at the Computer
Science Lab who were always in the coffee room before me),

11,000 (estimated number) kilometers on bike from my home to IDE (thanks
to all who contributed to my new bike for my 30th birthday),

∞ love and support (thanks to Cecilia again, Selma, Sofia and the
rest of my family)

 Rikard Land, July 2006

Cover Art:

 vii

Table of Contents

Chapter 1. Introduction ...1
1.1 Scope and Assumptions..2
1.2 Research Questions ..3
1.3 Research Phases and Methods..5
1.4 Thesis Overview...8

Chapter 2. Research Results ..11
2.1 Process Model for In-House Integration ..12
2.2 Practices..14
2.3 Architectural Analysis ..16
2.4 Summary of Included Papers..18

Chapter 3. Validity of the Research ..21
3.1 Research Traditions ..21
3.2 Relevant Research Methods ...25
3.3 Rigor and Validity in Each Research Phase30
3.4 Overall External Validity ...42

Chapter 4. Related Work ...45
4.1 Software Evolution and Integration..45
4.2 Software Architecture...55
4.3 Processes and People..61

Chapter 5. Conclusions and Future Work ...67

References..71

Paper I..109

Paper II ..133

Paper III...195

viii

Paper IV...207

Paper V ..229

Paper VI...253

Appendix A: Questionnaire Form and Data for Phase One269

Appendix B: Interview Questions for Phase Three285

Appendix C: Interview Questions for Phase Four289

Appendix D: Questionnaire Form for Phase Five..................................293

Appendix E: Questionnaire Data for Phase Five305

Chapter 1. Introduction

It is well known that successful software systems must be evolved to remain
successful – as a consequence they are progressively modified in various
ways and released anew [237,299,302]. A current trend is to increase the
possibilities of integration and interoperability of software systems with
others. This is achieved typically by supporting open or de facto standards
[265] or (in the domain of enterprise information systems) through
middleware [51]. This type of integration concerns information exchange
between systems of mainly complementary functionality. There is, however,
an important area of software system integration that so far, has been subject
to little research, namely the integration of systems with overlapping
functionality. For such overlapping systems, developed and controlled in-
house (i.e. within a single organization), the problems involved in this kind
of systems integration – although commonly occurring in practice – has been
studied even less. I have (together with colleagues) labeled this type of
integration in-house integration1 for short (more precisely it should be
labeled in-house integration of in-house controlled software systems2). There
are several possible reasons for the gradual or sudden development of
overlapping systems: the systems may initially have been built to address
different problems in different parts of the organization but have evolved and
expanded to include more and more functionality. Finally, the overlap is
significant enough to attract the attention of management. Other, more

1 As we use both the terms “integration” and “merge” in this thesis, let us clarify our usage

briefly: In-house Integration describes the overall task of creating a new system given two
or more existing, functionally overlapping, software systems within an organization. To
achieve this, Merge is one strategy – among several – which means a tight integration.

2 Existing systems developed and controlled in-house are often called “legacy systems”. We
have avoided this term, however, since it is often associated with characteristics in addition
to merely being controlled in-house, such as being old and built with old technologies,
having a degraded architecture, and being insufficiently documented, thus being difficult to
understand and hard to change.

2 Chapter 1: Introduction

dramatic events include company acquisitions and mergers, and other types
of close collaborations with other organizations. A new system combining
the functionality of the existing systems would improve the situation in the
sense of rationalizing internal resources, as well as from the points of view
of users, customers, and other stakeholders.
An increasing number of products incorporate software, and there is also an
increasing trend to the building and using software internally for use within a
single organization. Reorganizations and company mergers are also common
phenomena, which means that it is becoming increasingly important to be
able to eliminate the overlap of software systems. Although many
organizations have certainly encountered this challenge already, and more or
less successfully handled it, their experiences have – to my knowledge – not
been collected systematically across organizations and made publicly
available.
In this thesis, I present a sequence of research studies collecting the
experiences of organizations, analyzing these experiences and generalizing
them into guidelines for future in-house integration projects.

1.1 Scope and Assumptions
I have viewed the problem of in-house integration mainly as a software
engineering problem, and have chosen two complementary points of view
from which to study the topic of in-house integration, namely processes and
software architecture, motivated and described below:
• Processes. In-house integration is essentially a human endeavor, which

can be seen as a set of activities in an organizational context. Important
activities and stakeholders need to be identified – both at a high-level
and in more concrete situations – so that decisions as well-founded as
possible can be made rapidly, and so that the cost and time of the
implementation process are predictable. If some important activities are
omitted, the decisions may be ill-founded and the integration delayed
and costly, or never completed, and/or the resulting integrated system
may be of low quality.

• Software Architecture. The systems to be integrated are arguably
among the most important artifacts to study and evaluate. They should
be evaluated from a technical point of view as well as from the
perspective of various stakeholders (users, managers, etc.). The need for
early and rapid decisions has led me to focus on the architectures of the

Research Questions 3

systems, i.e. high-level descriptions of the systems. Many issues can and
should be briefly discussed, in order to form a relatively high-level
statement concerning important similarities and differences between the
systems. In the thesis, the term software architecture means not only the
well-known academic definitions concerning structure [25], but also
other high-level design decisions with significant impact, in particular
data models and frameworks used (in the sense “environment that
defines components”).

I am fully aware, however, that an organization must combine the
knowledge and understanding of many other fields of research and practice
to succeed with its in-house integration. Examples of other important issues
to consider, outside the scope of this research, are how to properly handle the
staff whose employment might depend on decisions concerning the future of
existing systems, how to overcome cultural differences [150] and how to
make the suggested processes and practices actually work [321]. Proper
application of the theories and practices of management, business, and
(organizational) psychology, would certainly contribute greatly to the
success of an in-house integration project. This said, I believe that there are
some pitfalls in the technical areas we have studied that may cause enormous
inefficiencies or even failures if one fails to recognize them and manage
them properly.

1.2 Research Questions
The question for an organization faced with the in-house integration
challenge is how to make decisions as good as possible, as rapidly as
possible. This thesis is intended to obtain an answer to this question.
Before proceeding, however, I would like to clarify several issues with this
formulation. First, there is not an absolute optimum to be found in a
mathematical sense of “as good/rapidly as possible”. The answer to be
expected is a set of suggested activities that should precede a decision;
activities that can be carried out rapidly. Second, the “goodness” of a
decision depends on perspective; in this thesis decisions and events are
evaluated from the point of view of organizational economics, where a
“good” decision would be one which allows an organization to make the
transition efficiently (in terms of time and money) from the situation with
functionally overlapping systems to a state with one single coherent system.
(From other points of view the same decision could be considered disastrous,
for example by the staff at a site that will be closed as a result of the

4 Chapter 1: Introduction

decision.) Third, even with this broad definition of a “good” decision, it is
difficult or practically impossible to obtain an evaluation properly and
unambiguously. From the economics point of view, one measure would be
the overall turnover and profit of the organization. However, from a
scientific standpoint one would need to know more particularly how much
the integration contributed to this economic result, taking into account all
direct and indirect effects. Also, one should expect integration to have a
significant up-front cost, and it becomes problematic to define when it is
most appropriate to evaluate the economic result.
I did not want to formulate a less interesting research question because it
would be easier to answer, but, aware of these limitations, I set out to pursue
the question I believe would give the most interesting answers, even if these
answers can only be partial and incomplete. In line with the focus on process
and software architecture, there are some more concrete questions that have
guided our research:
• How should a proper process be designed, both at a high level and in

terms of concrete practices?
• How can the existing systems be analyzed and a future system outlined,

rapidly and early enough while being at a sufficient level of detail to
enable a well-founded decision?

• To what extent are the suggested practices unique to the context of in-
house integration?

• To what extent are these practices today employed successfully, and to
what extent are they overlooked?

The more specific questions have in each research phase been further guided
by the following three types of (sub-)questions, which at the same time
describe micro-steps of the research method:
1. Survey Existing Practice. What ways of working are used in existing

organizations?
2. Evaluate Existing Practice. What are the experiences of these

organizations? In their own opinion, what mistakes did they make, and
what were they successful with?

3. Generalize. To what extent can these experiences be generalized into
suggestions for other organizations?

Research Phases and Methods 5

1.3 Research Phases and Methods
In general, the type of study method to be used depends on the research
problem and the maturity of the research field [313,347]. Exploratory studies
are needed for new problems where there are no developed theories and
where not even the concepts to study are very well known. As knowledge
about the problem is gathered and theories are developed, the research would
turn towards theory validation in the form of e.g. replicated experiments and
statistical methods. In the early stages, studies are more of a qualitative
nature, while later studies aim at quantifying the subject studied.
These general observations describe the research of this thesis well. As
described in the section on research questions (Section 1.2), the research
began with a survey of the current state of organizations, and their own
evaluation of how successful they have been. These experiences have then
been generalized to give guidelines. According to the series of study
questions, the research has progressed through five clearly distinguishable
research phases. The three types of questions described above – survey,
evaluate, and generalize – are also clearly identifiable within each phase.
Through participation in an industrial case (phase one), followed by a
thorough search for related existing publications (phase two), I realized that
in-house integration is a new and relevant topic to be studied on its own.
Experience from more organizations was collected (phase three), this leading
to two follow-up studies: one studying Merge more closely (phase four), and
one validating and quantifying the previous findings (phase five). This
sequence of research phases is depicted in Figure 1.
The rest of this section introduces the phases briefly, each in its own
paragraph. The research method of each is described in depth in section 3.3
and the complete published results of each are given in the appended papers
and appendices.

6 Chapter 1: Introduction

Phase Four:
Single Case Study and Formal

Model for Merge

Phase One:
Revelatory Case Study

Phase Two:
Survey of Integration Literature

Phase Three:
Multiple Case Study

Phase Five:
Questionnaire Validating and
Quantifying Earlier Findings

Figure 1. Research phases.

Phase One: Exploratory Case Study. I had the opportunity to participate in
an industrial project, in which three systems within a newly merged
company were found to have a similar purpose. Users and architects met to
evaluate the existing systems and outline possible alternatives for an
integrated system, including the possibility of discontinuing some of the
existing system(s). Management was then to agree upon the implementation
of one of these solutions. I obtained the data used as a participant in the
project. The questionnaire was used to obtain the experiences and opinions
of some of the other participants (the questionnaire form and collected data
are reprinted in Appendix A). The findings should be considered as lessons
learned from a single case, illustrating a topic not previously researched as
such. The three publications that resulted are to be seen as experience reports
[207,211,217]. Two of these publications are included in this thesis as Paper
I and Paper III. The events of this case were also further discussed in my
licentiate thesis3 [206].

3 The Licentiate degree is a Swedish degree somewhere between a M.Sc. and a Ph.D. degree.

Research Phases and Methods 7

Phase Two: Survey of Integration Literature. In phase one, it was
difficult to position the case study in relation to existing literature. A major
survey of the relevant literature was performed to investigate to what extent
the case experiences appeared in existing research publications. The relevant
literature had been searched for and consulted both before and after, but for
this phase, a systematic search scheme was designed. Publications
containing certain keywords were searched for in publication databases,
book lists, etc. Many publications were discarded on the basis of title and
abstract, but many were screened, and many publications studied more
thoroughly. An exhaustive search for new information was made in the
literature studied more thoroughly. This literature survey resulted in one
publication [212], which has been re-worked and extended into Section 4.1.
This phase enabled the formulation of the in-house integration of software
systems as a largely unexplored research challenge.
Phase Three: Multiple Case Study. Based on the first two phases, a set of
open-ended interview questions were formulated (reprinted in Appendix B)
and an active search was made for more cases with experience from in-house
integration projects. No theory had been developed at this stage but various
questions concerning the integration process, with a particular focus on
technical characteristics of the systems, were asked. I studied nine such
cases, mainly by performing interviews. Several data points enabled some
general conclusions to be drawn concerning important issues to evaluate
early in the integration process and the effects of not doing so, as well as
some concrete practices and risk mitigation tactics. This phase resulted in
five conference publications [209,214-216,220], both process related
[209,214,220] and architecture related [209,215,216]. These were later
combined and extended into one journal paper [213], which is included as
Paper II in the thesis. This phase led to two separate research directions, as
phases four and five.
Phase Four: Single Case Study and Formal Model for Merge. One
observation made during phase three was that a very tight Merge4 seemed to
be the strategy with the most variants and being the most difficult to
implement successfully. I therefore decided to study this particular strategy
in more depth and returned to one of the cases in phase three, where I
conducted follow-up interviews (the interview questions are reprinted in
Appendix C). A method for rapidly exploring Merge alternatives has been

4 Details about how we use this term can be found in section 2.1.

8 Chapter 1: Introduction

devised on the basis of this data. A prototype software tool to support the
method has also been developed with the help of students. This phase
resulted in one conference publication [210] describing the method itself and
one workshop publication [218] describing the tool, which are included as
Papers V and VI.
Phase Five: Questionnaire Validating and Quantifying Earlier Findings.
As the multiple case study of phase three had led to a number of qualitative
observations, a natural continuation of the work was to design a study aimed
at validating these. In addition, there were many observations on the same
level – such as an unordered list of suggested practices – which it would be
useful to rank in importance. A questionnaire consisting of a number of
questions with five-grade scales was therefore designed. The questionnaire
was distributed to six of the previous cases and two others. (The
questionnaire form is reprinted in Appendix D and the collected data in
Appendix E.) The responses were analyzed and published as a conference
publication [222] which is included as Paper IV.

1.4 Thesis Overview
Figure 2 describes the conceptual architecture of this research. There are
research questions, which are studied in research phases – each using some
research method – which result in research results as reported in research
papers. Related work is important both when defining the questions and
when reporting the results in papers.
The thesis is organized in the following way: a chapter or section is
dedicated to each of these concepts, with extensive references to the others.
Section 1.2 describes the research questions of the work. Section 1.3
presents an overview of the goals, research methods, and resulting papers of
the five research phases. Chapter 2 describes the research results, by
recapitulating the research questions, and shows how the research papers
answer these questions. Chapter 3 discusses the validity of the results, and
Chapter 4 surveys related work. Chapter 5 summarizes and concludes the
thesis, followed by a list of references on page 71. This is followed by the
research papers, reprinted with only layout changes; this means that each
appended paper contains its own sections on related work, research
questions, results, and references, all of which to some extent overlap earlier
sections of the thesis.

Thesis Overview 9

Research Result

Research Question Research PaperResearch Phase

Related Work

is
studied

in

1..n

is answered
by 1..n

is presented
in1..n

refers to

1..n 1..n

results in

1..n

is
influenced

by

results
in

Research Method

uses

1..n

1..n

1..n

Figure 2. The concepts of the thesis and their relationships.

10 Chapter 1: Introduction

Chapter 2. Research Results

This chapter provides a brief overview of the research results, the details
being presented in the appended papers. Figure 3 is a high-level overview of
the results showing the different elements of a proposed integration process.
There are two phases or sub-processes: a vision process (which results in a
decision) and an implementation process. Of these two, the thesis focuses on
the vision process, which involves the consideration of various strategies for
the final system and their associated project plans. To be able to decide
which strategy to implement, we describe the important elements of an
architectural analysis as well as some considerations concerning the
retirement of the existing systems. We have also observed a number of
practices that should be employed in the integration process, i.e. some
characteristics of the process at a fairly detailed level.
We have here aimed at outlining the main lines of thought and relating to
each other the results in the different papers. We therefore provide extensive
references to details in the included papers. We use italics for terms and
concepts that are used and explained further in the appended papers. Section
2.1 describes most of these concepts at a fairly high level, section 2.2
presents the suggested practices, and section 2.3 describes the architectural
analysis to be performed. This chapter concludes with section 2.4, in which
the papers included in the thesis and the contributions of each paper (in
particular mine) are listed.

12 Chapter 2: Research Results

Considerations

Integration Process Phases

Decision

Vision
Process

Suggested
Practice

Implementation
Process

Considerations
concerning
Retirement

is followed by

1

1..n

employs

1..n
leads to

1..n

is
influenced

by

Integration
Strategy

is associated with

1Architectural
Analysis

is
influenced

by

employs

includes

Project
Plan

includes

implements

considers

outlines

may
exclude

may exclude

Figure 3. The important elements of the proposed integration process.

2.1 Process Model for In-House Integration
In-house integration is typically initiated by the senior management, as a
result of an intention to rationalize (Paper II, section 3). In the integration
process, it is possible to distinguish between a vision process and an
implementation process. Even if this division is not always explicit, there is
a clear difference between the purpose of each sub-process, the participants

Process Model for In-House Integration 13

in each, and the activities included in each (Paper II, section 1.2; Paper III,
section 2). The vision process leads to a decision to a plan that includes a
high-level description of the future system both in terms of features
(requirements) and design (architectural description), as well as a project
plan for the implementation process, including resources, schedule,
deliverables, etc. (Paper II, section 1.2; Paper III, section 2). The target
system could preferably be characterized in terms of the features of the
existing systems, since these are well-known to the stakeholders (Paper II,
section 3.2; Paper III, section 2; Paper IV, section 3.5; Paper V, section
2.3.1; Paper VI, section 2.1). The implementation process then consists of
the execution of the plan.
At a high level, it is possible to distinguish between four strategies,
characterized by the parts of the existing systems that are reused (Paper II,
section 1.2; Paper IV, section 3.1): Start from Scratch, Choose One, Merge,
and – to be comprehensive – No Integration. By introducing these idealized
strategies, discussions can focus on two particular concerns that may
effectively exclude one or several strategies: the architectural compatibility
of the systems, and considerations concerning retirement (Paper II, Section
3.1; Paper IV, section 3.4). Of these two concerns, architectural
compatibility is easier to describe objectively and correlate with the chosen
solution; the existing systems being built the way they are, while the
considerations concerning retirement involve business considerations and
many stakeholders’ opinions (Paper II, sections 4.3 and 5; Paper VI, section
3.4). Based on the findings, a simple checklist-based procedure has been
developed, which ensures coverage of the main issues to be analyzed in
order to understand the consequences of each potential strategy (Paper II,
section 8.2) – even if, as is common, an outlined alternative lies somewhere
between these idealized strategies (Paper I, section 4; Paper II, section 1.2,
2.2 and 8.1; Paper IV, section 3.1.1).
For Choose One and Start from Scratch, one must consider the impact of
retirement (Paper II, section 5). Two influential factors when considering the
feasibility of retirement are the stakeholders’ satisfaction with the existing
systems and the life cycle phase of the existing systems (Paper II, section
5.1). For Choose One, one must also estimate the degree to which each of
the existing systems would replace the others, by considering different
stakeholders’ points of view (Paper I, section 4; Paper III, sections 2 and 3).
Typically, if a system is replaced by another, there is a need to ensure
backward compatibility and provide migration solutions (Paper II, sections
5.2 and 7).

14 Chapter 2: Research Results

The Merge strategy means reassembling parts from several systems into a
new system, and the most important issue to analyze is the compatibility of
the systems (see section 2.3 below). When considering the Merge strategy,
the procedure becomes recursive, so that for each component in the systems
it is possible to discuss whether to Choose One, or Start from Scratch and
create a new component, or Merge the components by decomposing the
components; the same types of analyses (i.e. impact of retirement,
compatibility, etc.) must be performed for these alternatives (Paper II,
sections 4.1 and 4.3).
An implementation plan must be outlined for the selected strategy,
considering resources available and what costs and risks would be acceptable
(Paper I, sections 4.2 and 4.3; Paper II, sections 6 and 7). The characteristics
of the plan will depend on the strategy selected. For Start from Scratch, the
plan must take into account the development and deployment of the new
system, and for Choose One, the evolution and deployment of the chosen
system (Paper II, section 6). For both of these strategies, the challenges of
the required parallel maintenance and eventual retirement of (some of) the
existing systems must also be addressed (Paper II, section 6) as well as the
additional costs of migration solutions (Paper II, sections 5.2 and 7). For the
Merge strategy, stepwise deliveries of the existing systems should be
planned, thus enabling an Evolutionary Merge, and the complexity of the
parallel maintenance and evolution of the existing systems must be taken
into account (Paper II, section 6). For the Merge strategy, there is often a
difference between the time scale and complexity envisioned by the senior
management, which could be labeled Rapid Merge, and an Evolutionary
Merge (Paper I, section 4.2; Paper II, sections 1.2, 2.2, and 8.1). The Merge
strategy requires a longer period of distributed development and a need for
synchronization, and results in potential conflicts between local and global
goals and prioritizations at different sites (Paper II, section 6.3).

2.2 Practices
A number of beneficial practices have been identified. Some were
encountered in the single case study of the first phase of the research (Paper
III, sections 2 and 3), but only identified as such and further described in the
multiple case study in phase three (Paper II, sections 3.2 and 6). Their
relative importance was indicated by means of a questionnaire in research
phase five (Paper IV, section 3.5).

Practices 15

During the vision process, two closely related practices were identified: to
assemble a small evaluation group and collect experience from existing
systems (Paper II, section 3.2; Paper III, section 2). Although these are good
practices in many software activities, they seem to be particularly important
during in-house integration projects; this is because a collective overview of
the systems must be obtained, and the previously separate groups of people
now need to cooperate (Paper II, section 3.2; Paper III, section 2). Various
stakeholders should evaluate the existing systems from their respective
points of view, and the requirements on the future system should preferably
be stated in terms of the existing systems, in order to reuse the results of the
requirements elicitation already performed for the existing systems, as well
as to evaluate the existing implementations of these requirements (Paper II,
sections 3.2 and 4.1; Paper III, sections 2 and 3; Paper V, section 2.3.1). In
the study, these two practices have been considered among the most
important of all practices, but have usually not been implemented to the
extent they should (Paper IV, section 3.5). Mechanisms and roles must be
defined in a way that ensures that a timely decision can be made in spite of
stakeholders not agreeing completely (Paper II, section 5.2). Stakeholders
will probably not be satisfied with a costly and time-consuming systems
integration that in the end will only present them with the same features
presented by the existing systems; it is therefore necessary to improve the
current state so that the future system is an improvement of the existing
systems (e.g., has richer functionality or higher quality) (Paper II, section
3.2). Another practice considered important – somewhat contradicting the
need for timely decisions – is to perform a sufficient analysis (Paper II,
section 3.2). Based on the current data it is not possible to determine which
of timely decision or sufficient analysis is in general more important for in-
house integration (Paper IV, section 3.5).
During the implementation process, commitment is very important (Paper II,
section 6.1; Paper IV, section 3.5). In particular, a strong project
management is needed, but success also depends on cooperative grassroots
(i.e. the people who will actually do the hard and basic work) (Paper II,
section 6.1; Paper IV, section 3.5). These aspects are frequently overlooked
(Paper IV, section 3.5). The most important aspect, and the most often
overlooked, is that management needs to show its commitment by allocating
sufficient and adequate resources (Paper II, section 6.1; Paper IV, section
3.5). Another practice very often overlooked is to make agreements and keep
them, this in a more formalized manner than the (previous) organizations are
accustomed to (Paper II, section 6.1; Paper IV, section 3.5). This may be
because the challenges of distributed activities have not been encountered

16 Chapter 2: Research Results

before in the organization(s) and are not well known, and/or because of a
strong reaction from staff as soon as the retirement of “their” system is even
remotely considered (Paper II, section 6.1; Paper IV, section 3.5). A common
development environment is needed, i.e. infrastructure support for e.g.
dividing work and sharing development artifacts, a common set of
development tools etc. (Paper II, section 6.1; Paper IV, section 3.5).
Due to the long time scale of especially the Merge strategy (since the Rapid
Merge seems not to be a realistic alternative), a stepwise delivery approach
should be employed, so that the existing systems can still be delivered
several times in the short term, while the long-term goal is a merged system
(Paper II, section 6.2). In order to succeed with this, one must find ways of
achieving momentum in the integration process, by implementing changes
that will achieve the long-term integration goal and which are also useful in
the short term; making such changes to the systems will, to some extent,
contribute to their more rapid convergence (Paper II, section 6.2).

2.3 Architectural Analysis
The findings and understanding concerning architectural analysis have
evolved and been refined through all the research phases, from initial
observations and lessons learned [300,348] in phase one (Papers I and III) to
include a broader, generalizable source of experiences in phase three (Paper
II), some reasoning about how to perform an analysis in order to explore
various Merge alternatives in phase four (Papers V and VI), and validation
of these findings in phase five (Paper IV).
As described above, there is typically no single individual having technical
knowledge of all existing systems (Paper II, section 3.2; Paper III, section 2).
To enable rapid analyses, the technical features of the systems need to be
discussed at a high, i.e., architectural level. The first step is, therefore, to
prepare a common ground for discussion, which for architectural analysis
means that similar architectural descriptions need to be created (Paper I,
sections 4 and 6; Paper III, section 2; Paper V, section 2.3.1; Paper VI,
section 2.1). This makes it possible to discuss known strengths and
weaknesses of the existing architectural design solutions, and the
possibilities of reusing individual components (Paper I, section 4; Paper II,
sections 4.1 and 4.3). From these architectural descriptions, it is possible to
design alternatives of a future system, which can be evaluated from different
points of view given that relevant properties of the components are annotated
(Paper I, section 4; Paper III, section 2; Paper V, sections 2.3.2 and 3.2;

Architectural Analysis 17

Paper VI, section 2.2). For example, if each component is annotated with the
estimated effort required for its modification, it is possible to calculate an
approximation of the (minimum) total implementation effort (Paper I,
section 4.2; Paper V, sections 2.3 and 2.3.2; Paper VI, section 2.2). It is also
possible to evaluate future maintenance efforts, measured by the number of
technologies used, program size (LOC), and conceptual integrity (Paper I,
section 4.1). Quality and features can be discussed both component by
component (i.e., considering which of two alternative components is the
more desirable) and at system level (i.e., considering the system level
qualities) (Paper II, section 2.2; Paper V, sections 2.3.2 and 3.2).
The more incompatibilities between the existing systems are found, the less
feasible it becomes to consider reassembling components and make them
work together (Paper I, sections 4 and 4.1; Paper II, section 4.3; Paper IV,
section 3.4). The studies have enabled the identification of three high-level
aspects of architectural incompatibilities, which are likely to cause problems
if the differences are too large: structures, frameworks, and data models
(Paper II, section 4.4). Based on the studied cases, there is convincing
evidence that the structures of the systems must be very similar for it to be
feasible, in practice, to Merge them (Paper II, section 4.3). In this context,
“framework” should be understood broadly, as “an environment that defines
components”, i.e. an environment specifying certain rules concerning how
components are defined and how they interact (Paper II, section 4.1); the
observation here is that interfaces (in a broad sense, including, for example,
file formats, API signatures, and call protocols) must be similar in format
and semantics for Merge to be feasible. An exact match is not however
necessary since it is always technically possible to modify the systems
(Paper II, section 4.1; Paper IV, section 3.3). Since data is processed and
interpreted in many parts of the system, too large differences between the
data models of the systems means that the Merge strategy is practically
infeasible (Paper II, section 4.4).
In the cases studied, at least, the systems to be integrated often exhibited
certain types of similarities and are thus not as incompatible as one would
perhaps expect: technologies and programming languages are often similar
or the same, and it is not uncommon that a particular technology is used to
support a componentized architecture (Paper II, sections 2.2 and 4.3; Paper
IV, section 3.3). The systems very often have components with similar roles
but these components may be structured in different ways; the most
similarities can be expected between hardware topologies (Paper II, section
4.4; Paper IV, section 3.3). Existing user interfaces also show some amount
of similarities (Paper IV, section 3.3). Similarities can often be traced to the

18 Chapter 2: Research Results

time when the first systems of a certain type were created, which means that
certain ways of solving certain problems have become cemented in a number
of systems which are still in use (Paper II, section 4.3; Paper IV, section 3.3).
There are often, also, some domain standards applicable to the systems,
which make them similar in at least some respects (Paper II, section 4.3;
Paper IV, section 3.3). We also found an additional, rather unexpected
source of similarities: the systems may have been evolved independently
(i.e. branched) from a common ancestor (Paper II, section 4.3; Paper IV,
section 3.3). To formulate these observations as a guideline: if the systems
address essentially the same problem, and/or if they are contemporaneous,
and/or if there are standards within that particular domain, and/or if the
existing systems have some common ancestry due to previous
collaborations, the systems are possibly similar enough for the Merge
strategy to be seriously considered.

2.4 Summary of Included Papers
This section describes the results of each appended paper in terms of the
results described above, and indicates my personal contribution of each
paper.
Paper I: “Software Systems Integration and Architectural Analysis – A

Case Study”, Rikard Land, Ivica Crnkovic, Proceedings of
International Conference on Software Maintenance (ICSM),
Amsterdam, Netherlands, September 2003
This paper describes observations and lessons learned [300,348]
from the single case study of phase one. Here we can find some
fundaments of the integration process, architectural reasoning
(section 4), and an early characterization of integration strategies
(section 3).
I was the main author; I participated in the case study as an active
project member, making observations and submitting reflections.
My supervisor and coauthor was a valuable mentor, and both
authors related the case study to existing research literature, and
formulated general conclusions.

Paper II. “Software Systems In-House Integration: Architecture,
Process Practices and Strategy Selection”, Rikard Land, Ivica
Crnkovic, accepted for publication in Journal of Information and
Software Technology, Elsevier, 2006

Summary of Included Papers 19

This journal paper describes the multiple case study of phase three
and provides an extensive analysis and synthesis of observations
from nine cases of in-house integration. The paper describes the
overall process, integration strategies, architectural analysis and the
role and sources of architectural incompatibility, important
considerations regarding the retirement of existing systems, other
issues to evaluate, and observed practices. This paper builds on
several earlier conference publications [209,214-216,220].
I was the main author leading all phases of the study. Early design
and analysis was performed with the help of my supervisor and
coauthor (as well as other colleagues, co-authors of the earlier
conference papers). During the writing process, my supervisor and
coauthor have made many suggestions and given much advice, and
we have had many constructive discussions.

Paper III: “Integration of Software Systems – Process Challenges”,
Rikard Land, Ivica Crnkovic, Christina Wallin, Proceedings of
Euromicro Conference, Track on Software Process and Product
Improvement (SPPI), Antalya, Turkey, September 2003
This paper describes the case study of phase one, focusing on
overall process characteristics and certain practices. It can be read as
an in-depth example of the small evaluation group practice.
I was the main author; I participated in the case study as an active
project member, making observations and submitting reflections.
The coauthors aided in relating the case study to existing research
literature and formulating general conclusions.

Paper IV. “Software In-House Integration – Quantified Experiences
from Industry”, Rikard Land, Peter Thilenius, Stig Larsson, Ivica
Crnkovic, Proceedings of Euromicro Conference Software
Engineering and Advanced Applications, Track on Software Process
and Product Improvement (SPPI), Cavtat, Croatia, August-
September 2006
This paper reports the results of phase five. Based on a
questionnaire survey, the paper quantifies and validates some of the
earlier qualitative findings: various aspects of architectural
compatibility, decision making considerations, integration
strategies, and practices.
I was the main author; my contribution being to lead all phases of
the study. The coauthors were involved in the outlining of the study,

20 Chapter 2: Research Results

discussions during its execution, the designing and distribution of
the questionnaire, the analysis of the results, and the writing of the
paper. Peter Thilenius stood for the expertise concerning
questionnaire design and statistical analysis.

Paper V. “Merging In-House Developed Software Systems – A Method
for Exploring Alternatives”, Rikard Land, Jan Carlson, Stig Larsson,
Ivica Crnkovic, Proceedings of the 2nd International Conference on
the Quality of Software Architecture, Västerås, Sweden, June 2006
This paper is based on a follow-up study of a case which
implemented the Merge strategy. The paper suggests a method for
exploring various Merge alternatives, by making incompatibilities
explicit, recording decisions made, and guiding the exploration on
the basis of information entered. The method is designed to be used
by a small evaluation group of architects.
I was the main author; I led the study and conducted the case study
interviews. Jan Carlson and I took the method from initial idea to a
formalized method, where Jan stood for the expertise in formal
modeling. The other coauthors were involved in outlining the study
and discuss it throughout.

Paper VI. “A Tool for Exploring Software Systems Merge
Alternatives”, Rikard Land, Miroslav Lakotic, International ERCIM
Workshop on Software Evolution, p 113-118, Lille, France, April,
2006
This paper describes a tool supporting the method described in
Paper V.
I was the main author; my contribution being to act as customer and
steering group for a student group in a university course project
which implemented the tool. One of the students, as coauthor,
assisted in the writing of the paper and further updated the tool after
the course had ended.

Chapter 3. Validity of the Research

Why should the results of this thesis be accepted? And how general are
they? These are important questions, and are not easily answered. The goal
of this chapter is to show that the results have been achieved by systematic
study and that an amount of external validity has been established for the
results.
In the research field of Software Engineering, several research traditions and
methods meet. Here we find mathematical reasoning alongside studies of
human behavior, technology, business, society, and their interaction.
Quantitative studies are performed in parallel with qualitative research,
purely theoretical and analytical reasoning with highly pragmatic
observational studies. There is no single articulated research tradition to
adhere to, no commonly agreed upon guiding rules for conducting and
evaluating research, no consensus on what makes a study “scientific” and
“valid” [348]. This chapter therefore begins by briefly reviewing various
research traditions and views of science (Section 3.1), and continues by
describing the most relevant research methods (Section 3.2). Since external
validity (the ultimate goal) requires that construct validity, internal validity
and reliability are achieved, the larger part of the chapter describes in detail
how the research has been carried out (section 3.3). Section 3.4, which
concludes this chapter, is a synthesis of these accounts, and discusses to
what extent the results are externally valid.

3.1 Research Traditions
There are a number of research traditions, of which those most influential in
shaping the field of Software Engineering are briefly described here. We do
this because the meaning of validity may be rather different in different
traditions.

22 Chapter 3: Validity of the Research

3.1.1 Characterizing Science
In empirical science essential elements are theories, which engender
predictions, which can be correlated with observations. Traditional criteria
for evaluating this type of research include issues such as the objectivity of
the researcher5, systematic and rigorous procedures, the validity of data,
triangulation, and reliability [300]. However, even a high number of
observations cannot “prove” a theory right, only “support” it; an essential
element of a scientific theory is, therefore, that it must be falsifiable
[63,308]. The commonsense inductive argument says that the more
supporting data, the stronger supported the theory is. However, this
standpoint is difficult to defend logically [63,308], and an alternative is the
notion of corroboration [308], which means that a theory must have
withstood a number of tests aimed at falsifying it, or comparing it with a
competing theory. However, there are some limitations both in principle and
practice. First, empirical science is most suitable when the subject of study
lends itself to relatively simple, quantifiable models. Also, observations are
subject to e.g. measurement errors, inappropriate use of measurement
instruments – which may be inadequate in any case – and not least,
predispositions of the observer making the observations [63,76]. When
observations contradict the theory there is no way to deduce with logic alone
where the error lies – in the theory, the observation, or in some additional
assumption or theory [63]. Historically, this has caused numerous
controversies between competing theories, in which the proponents of each
side disqualify the other’s observations and experimental settings [76]. For
all these reasons, one must be careful to distinguish between observations
and facts6.
Naturalistic enquiry means to study the real world, where the researcher
does not attempt to manipulate the phenomenon of interest – as opposed to
an experimental setting [300]. This is typical for social sciences and is

5 Total objectivity may be a too idealistic view; however, the researcher should strive to

maintain some scientific integrity with respect to various interests that could bias the
results, and define, follow, and document research procedures that could in principle have
been used by someone else.

6 All these arguments should make us careful in attempts to distinguish “science” from “non-
science” [63]. Taken somewhat to the extreme, these arguments have led to deconstructive
and relativistic standpoints, according to which science is mainly a social activity (i.e.
scientists have achieved a certain status), and it is consequently meaningless to discuss such
a thing as validity.

Research Traditions 23

common in Software Engineering when it comes to studies of the social and
psychological aspects of software, such as usability [280,374] or the
introduction of a new process or method into a development team [192].
There is an element of interpretation involved in most or all research,
including Software Engineering, and consequently also this thesis. The
hermeneutic research tradition emphasizes the interpretative element, and is
the prevalent tradition in studies of e.g. literature, law [300,392]. The notion
of text can be extended beyond written texts to include speech, multimedia,
or any occurrence. In the hermeneutic tradition, there is little sense in
discussing external validity; validity here rather means a reasonable
explanation which appeals to universal human experiences and provides an
understanding of the artifact studied (see further discussion under 3.1.2
below).
Computer Science is largely founded on logics and mathematics, in which
there are no observations of an external world [372]; validity here means
formal correctness. Computer Science and formal models are an important
part of Software Engineering, but here the focus shifts from correctness
towards usefulness in an engineering context (i.e. closer to naturalistic
enquiry) [192,332].
Ethnography takes a cultural perspective [300], and has found its way into
Software Engineering [321]. The traditions of phenomenology and social
construction (and constructivism in general) would also be interesting to
apply in Software Engineering, as they focus on people’s experiences and
how they explain and “construct” the world they inhabit [300,392]. Other
traditions include the positivist and realist traditions, but these seem less
influential in Software Engineering as their primary focus is on the notions
of reality and truth [392]; in Software Engineering we are more interested in
usefulness (in this sense our research field belongs to the pragmatic
tradition).
Historical explanations of how science progresses adds an interesting
perspective to the discussion about validity (e.g. conformance to a paradigm
in normal science [76,202]) but are of no help for individual researchers or
individual studies [63], other than making us humble about the validity of
our studies.

24 Chapter 3: Validity of the Research

3.1.2 Quantitative and Qualitative Research
It is important to distinguish between quantitative and qualitative research.
Which one to choose depends on the purpose of a particular study:
quantitative studies can give a certain amount of precision in a mathematical
sense, but require the question to be studied to be well-understood and
appropriate measurement instruments to be available (cf. the discussion on
empirical science in 3.1.1). A qualitative study should be chosen when the
research question is more open, when the topic being studied has, as yet, no
strong theory that guides the design of the study, when the context cannot be
separated from the phenomenon being studied, and/or when individual
personal experiences of the phenomenon are as important as the
phenomenon itself [300]. Since in qualitative studies the researcher has less
firm theory on which to base the study design, these kinds of studies are
usually more flexible as the research unfolds naturally and new opportunities
for observations appear. For this reason, the terms flexible and fixed designs
are sometimes used instead of the quantitative-qualitative dichotomy [313].
Many study questions, not least in the field of Software Engineering, are
multi-faceted and thus must include both quantitative measurements and
qualitative data [300].
Four types of validity commonly referred to are: construct validity, internal
validity, reliability (or conclusion validity), and external validity (or
generalizability) [313,395,403]. (These are further discussed in section 3.3.)
These types of validity are applicable to both quantitative and qualitative
research, and the first three in particular are closely connected with the
traditional evaluation criteria for research such as researcher objectivity,
systematic and rigorous procedures, and triangulation [300]. When
considering the final goal of a study, and its external validity, there are
differences between quantitative and qualitative research. Quantitative
research has a theoretical foundation in statistics, in which terms such as
probability and confidence have a well-defined mathematical meaning [276].
External validity is achieved by showing that the prerequisites are fulfilled
(i.e. the population is well defined, some appropriate sampling strategy has
been chosen, etc.). Although this to some extent is also applicable to
qualitative research, it has been argued that understanding of the
phenomenon studied – as judged by others – is ultimately the only validation
possible [254]. If people consider an explanation to make sense, i.e. if it
actually explains something to them, it should be considered valid (cf. the
discussion on interpretations and hermeneutics in 3.1.1). For complex
occurrences considerably dependent on their social and economical contexts

Relevant Research Methods 25

(including places and points of time), there are more or less reasonable ways
of explaining phenomena, but labels as “right” or “wrong” are not
appropriate. Conclusions are made interesting for some group of people [29].
“Scientists socially construct their findings.” [96] However, validation
cannot be totally arbitrary; any claim needs to be strongly supported by data
and the reasoning that led to a certain conclusion [254]. I agree that “insight,
untested and unsupported, is an insufficient guarantee of truth.” [320]

3.1.3 Positioning This Thesis in the Context of Research
Traditions
The research presented in this thesis is mostly in the form of naturalistic,
qualitative, flexible, observational studies (phases one, three, and four). It
has also involved a formal model (phase four), the usefulness of which
however remains to be validated. The fifth phase aims at quantifying earlier
results to some extent. All phases contain an interpretative element, and
there is an implicit inductive argument in that similar phenomena are
observed in several cases, and also since some of these observations are
similar to those of others. Concerning validation, the goal of the thesis is to
provide a certain amount of insight and understanding of software in-house
integration rather than to present quantitative results based on statistical
analyses. The details concerning construct validity, internal validity, and
reliability are presented in section 3.3 in order to show how the thesis fulfills
the traditional criteria for quality research.

3.2 Relevant Research Methods
Let us now turn to a more concrete level and look at various research
methods, in order to motivate the choice of method in each research phase.
The goal of a research study is often to establish a relation between certain
variables; some are controlled as part of the study setup (called independent
variables), and some output (dependent variables) are recorded. When a
theory is to be tested, the outputs are correlated with predictions. Depending
on the area of study, and the specific questions, it may be difficult to control
(or even measure) the input variables, and different research methods are
thus suitable in different situations. Also, depending on how mature a theory
is, different kinds of tests are needed. Initially, some sense is required to be
made out of seemingly chaotic data, after which a theory is formulated.

26 Chapter 3: Validity of the Research

There is first a focus on gathering some support and only later on testing the
theory through falsification attempts, or comparison with rival theories
[63,348].
This section describes some common research methods and the
circumstances under which they are suited, and then motivates the choices of
research methods in the five phases.

3.2.1 The Case Study
For contemporary problems which cannot be properly studied outside their
different complex contexts – and where the complete context may not even
be known – the case study [403] is suggested as an appropriate research
method. A multiple case study, i.e. a study of several cases with known
similarities and differences, is considered to give a higher confidence in the
external validity than a single case study [403]. A single case study is
appropriate for example when a research question is new, when a case has
such properties that it would put the theory to a severe test (a critical case)
or when a certain case is thought to be extreme in some other way, such as a
successful (or disastrous) project, which would be a good source from which
to learn (an extreme case or illuminative case) [300,403]. Time and resource
limitations might also prohibit more than one case to be studied. A
revelatory case is one, the importance of which is only realized by the
researcher during (or after) the study, for example in characterizing a new
research problem [403]. Often the results of case studies are reported as
observations or lessons learned [300,348]. If a case study is planned so that
a contemporary event is studied when it occurs, it is possible to perform the
same measurements before and after the event – which is an advantage from
a scientific point of view. In some case studies, however, the chain of events
being studied is partly historical, as for example when it is only realized after
some initial events that it is worth being studied {Yin 2003 867 /id} – such
as the topic of in-house integration.
The problem with case studies is that the complex context, in terms of many
influential (partly unknown) factors, makes it difficult to generalize the
results. This is of course not a problem if the purpose is indeed to evaluate
something for use in a particular context (for example within a specific
organization) [192], but to be able to claim any wider external validity, the
best advice available is to propose and evaluate several rival theories as
explanations of the results [300,403]. And as explained in the discussion

Relevant Research Methods 27

about qualitative studies (section 3.1.2), an important goal is to provide
understanding, i.e. an explanation that others find reasonable [29,96,254].

3.2.2 Grounded Theory Research
According to the grounded theory research method [359], theory is
constructed from data even if the researcher has only few and vague
preconceptions of the problem under study. With this method, data is
collected, leading to the proposal of some initial theory. Data collection
continues, guided by the theory, and after each round of data collection the
theory is adjusted to explain the data collected so far. This continues in an
iterative manner until a satisfactory level of agreement between new data
and the theory is attained. This method aims at developing a new theory
(which can be contrasted with the positivist ideal of empirical science, in
which data should be collected in order to test a particular proposition
formulated in advance). The grounded theory method originates in social
science, and tries to account for some of the characteristics of that field: the
important parts of the expected results are qualitative, and the data may be
expensive to collect. It is necessary to be practical and efficient for larger
scale studies so that the data to be collected for each new study object can be
more accurately defined – guided by an analysis of the previously collected
data – and thus collected more rapidly. The method has also found its way
into Software Engineering and Information Systems [274,277,363]. Also,
grounded theory research is typical for fundamental or basic research, in
order to provide some insight into a phenomenon, but is not necessarily
followed by action [300].
Grounded theory should not be mistaken for free-range exploration with no
predispositions at all; this is seldom the case for a researcher [313]. Even
without an explicit initial theory or proposition, or even a well-articulated
research question, there is no such thing as a tabula rasa (“unscribed
tablet”); the researcher will always be guided by his or her previous
knowledge and experience [313]. In my opinion, the strength of the
grounded theory method is that it codifies the element of an early qualitative
study (when, as yet, there is no theory to be tested) in that it emphasizes a
constant interplay between data and theory [274,300].
In a grounded theory study, it is difficult to claim external validity – the
theory was built from a certain set of data and has not been tested on other
data. As it is a qualitative method, the sought-after type of validity is (as
described in section 3.1.2) an understanding of the phenomenon being

28 Chapter 3: Validity of the Research

studied, which is (partly) argued for by demonstrating a rigorous approach.
For studies in social sciences, where the grounded theory method originated,
external validity is not always the goal, but the theory being built is (or
should at least be) falsifiable in order to be scientific. Typically, for a theory
developed this way, further studies are needed – employing other methods –
in order to claim external validity. Of all qualitative methods grounded
theory research is among those most in accordance with the traditional
research criteria (e.g. objectivity of researcher, systematic and rigorous
procedures, validity of data, triangulation, reliability, external validity)
[300].

3.2.3 The Experiment
The classical method of empirical science is the experiment. The researcher
typically makes several measurements while adjusting the independent
variables, and records the output (dependent variables). This makes it
possible to test theories rigorously in order to refute or support them (by
comparing the values of the output variables with those predicted by the
theory), or to determine the numerical value of a constant in a theory. The
experiment has been a successful method in natural sciences and medical
studies, and has found its way into Software Engineering [23,367,395,406].
For example, if one wants to determine whether the use of a certain process
is better (in some sense) than the use of another, one could study a project
group following the process and an equivalent project group following the
other, and measure which was most more successful. Large-scale complex
phenomena, which cannot be controlled by the researcher, can be studied in
a natural experiment [300]. This means that the phenomenon is studied
before and after a known, naturally occurring change in input parameters.

3.2.4 Formal Proofs
Mathematics and formal reasoning are essential tools for precisely
formulating and analyzing concepts and ideas (see e.g. [1,6,78]). However,
in Software Engineering the usefulness or feasibility of a concept (which
must be studied using some other method) is equally important as its formal
correctness.

Relevant Research Methods 29

3.2.5 Construction
The construction of software as a proof of some concept is common in
Software Engineering research, often in the form of a tool supporting a
process [90,91,102,177,179,248,325,326]. Seen in isolation, the scientific
value of such construction can only be to prove that building this kind of
software is possible – which may indeed sometimes be an achievement
[348]. More interesting as a Software Engineering result is the evaluation of
the tool in terms of feasibility, usefulness, efficiency, or performance.

3.2.6 Positioning This Thesis in the Context of Research
Methods
As the topic of this thesis is a contemporary, complex phenomenon, research
is largely based on case studies. In the first phase of my research, I took the
opportunity to participate in a potentially interesting project, but was at that
time not aware of the topic (in-house integration) for which I would later use
the case study as an illustration (it is thus a revelatory case). There was no
relevant theory or proposition, and the way forward chosen, the best
available, was to collect further experiences (with a focus on architecture and
processes) from organizations in a multiple case study in phase three. In
phase four, one of the previous cases was selected for a new case study
(concerning the Merge strategy) with a new set of questions. The case was
chosen as an extreme case, the only one for which the Merge strategy had
been clearly chosen and successfully implemented (although implementation
is not completed yet).
As the research has progressed from a state of no proposition at all, data has
been collected in order to build theory in a series of studies according to the
grounded theory scheme. After the exploratory/revelatory case study of
phase one, I performed a literature survey in phase two to formulate more
precise questions for further data collection in phase three. This enabled the
formulation of more specific questions, studied in phases four and five.
Particularly within phases three and four, the data collection has been more
directed as more data is collected (i.e. preliminary observations after a few
interviews has led to more specific questions in the later interviews). So far,
we have not developed a theory sufficiently to carry out an experiment, nor
has there been instruments fine enough for measuring the outcome.
Data has been collected through project participation, direct observations,
interviews, and questionnaires. In my studies of the literature, I have aimed

30 Chapter 3: Validity of the Research

at being as rigorous and systematic as possible in defining, documenting, and
following a protocol. A formal model has also been constructed, which has
been implemented in a software tool; the usefulness and feasibility of these
will be further validated in a real-life context, e.g. in the form of a case study
or natural experiment.

3.3 Rigor and Validity in Each Research Phase
The rest of this section describes the research methods of each phase in
detail. The motivation for this section is that to claim external validity, one
must have achieved three other types of validity:
• Construct validity means ensuring that the data measured and used

actually reflects the phenomenon under study. The general advice to
achieve this is to triangulate data [96,300,313,403], i.e. to collect
different types of data (e.g. both interviews and measurements) from
several independent sources (e.g. interviewing more than one person).
Yin also gives the advice of establishing a chain of evidence (i.e.
documenting how conclusions made are traceable to data) and letting
key informants review the draft case study report [403]. For interviews
and questionnaires, construct validity also means that the researcher
must also avoid leading or ambiguous questions [313].

• Reliability concerns the repeatability of the study. Ideally, any one
studying the exact same case (not only the same topic) should be able to
repeat the data collection procedure and arrive at the same results
(although this is difficult in practice for phenomena that change over
time). This is ensured by establishing and documenting how data is
collected; Yin’s two pieces of advice are to document and use a case
study protocol and develop case study database where all data and
metadata is collected [403].

• Internal validity means ensuring that the conclusions of the study are
indeed true for the objects that have been studied, so that e.g. spurious
relationships are not mistaken for true causes and effects [254,313].
Descriptions of data must be accurate, which can be ensured by
introducing a review step where informants review e.g. copied out
interview notes [313]. The researcher must also be open to different
interpretations and theories, and avoid being predisposed to specific
interpretations [254,313]. To increase the internal validity, there are
several types of triangulation that should be employed [96,403]: data

Rigor and Validity in Each Research Phase 31

triangulation (using more than one data point for the same observed data,
e.g. using different people’s opinions, studying the same object at
different times), observer triangulation (using more than one observer to
avoid subjectivism), methodological triangulation (using more than one
method to analyze data), and theory triangulation (applying more than
one explanation to the observations and compare how well each can
explain the results).

That is, if a study uses the wrong indicators for the objects being studied (i.e.
construct validity is not achieved), and/or is not internally valid, and/or is not
replicable, it is not possible to claim external validity. Although a bit
lengthy, this section is essential to motivate that I have been rigorous in
following the available good practices in order to achieve these three types
of validity. In addition, the characteristics of different methods have some
direct implications on external validity as well, which is also described.
One difficulty, as pointed out in the introduction, is to judge whether a
certain organization made the “right” or “wrong” decisions (if such things
exist), whether they worked inefficiently or not, etc. Instead, the
interviewees themselves have been asked to describe what they think should
have done differently, what the most beneficial elements of their projects
were, etc. My impression is that the respondents are well aware of whether
they wasted time and money on activities that led nowhere, whether they
were inefficient etc., based on their previous experiences from other projects
and some general knowledge of good practices.

3.3.1 Phase One: Exploratory Case Study
I had the opportunity to be part of a project where a newly merged company
had identified three overlapping software systems that addressed similar
problems. The project would evaluate the existing systems from several
points of view, identify some opportunities for creating an integrated system,
and management would select one of the alternatives. My role was to aid the
project leader in planning and documenting the project, and participating in
discussions with the architects and developers of the systems. These
discussions concerned both high-level decisions made in the systems, and
two main alternatives for integration were outlined (plus the option of not
integrating). In the end a decision was made for a loose integration. After the
project finished, a questionnaire was distributed to the participants with
some qualitative questions, which were then summarized in order to draw
some conclusions in the form of lessons learned.

32 Chapter 3: Validity of the Research

I had difficulties relating the case to existing literature on software
integration, so its merit from a scientific point of view was that it illustrated
a somewhat new relevant research topic. This is supported by the fact that
the three papers reporting this case study were accepted for publication at
three conferences, each paper describing the case from a different point of
view: included as Paper I in the thesis is a description of the architectural
analysis made [211] and as Paper III is a description of the process used
[217]. In addition, we reported how the IEEE standard 1471-2000 [159] was
used in the discussions on architecture [207].

Construct Validity
To ensure construct validity, data triangulation was achieved by using two
different sources of evidence: personal participation in the project, and a
questionnaire. The collection of six other people’s points of view provided
several data points. The reader may judge the quality of the questionnaire
form itself, as it is reprinted in Appendix A together with the responses. I
was careful to not make any speculative claims that are not founded in data,
although the “chain of evidence” requested by Yin [403] was not explicitly
constructed and managed, mainly due to my inexperience. One of the project
participants (who participated in both the user evaluation and management’s
decision) read and commented the three papers describing the study, which
is in line with Yin’s advice of having key informants review the draft case
study report [403].
The perhaps strongest criticism of the construct validity is that the decision
was never implemented; this would mean that the case is not qualified as a
good example. Part of the response is that the decision process itself (which
is really the scope of the case study) should indeed qualify as a good
example of a systematic process with certain analyses being made. (In
retrospect, it seems clear that it was not possible to make a consensus
decision that would effectively kill one or two of the three systems. And the
organization never committed itself to implementing the decision, as it was
considered inferior by the technicians.)

Reliability
The case study protocol was as simple as: participation in the project,
followed by the distribution of a questionnaire. The participation experiences
have not been documented as a data source, but questionnaire form and data,
as well as the project documentation have been stored for future reference;
the questionnaire form and data are reprinted in Appendix A but the project
documentation is confidential.

Rigor and Validity in Each Research Phase 33

Internal Validity
I participated in the project, and the other project members filled a
questionnaire, so the data descriptions are accurate. As this case is used to
illustrate a new research topic, it is difficult to argue that theory triangulation
is applicable. How data triangulation was achieved (using multiple data
sources) is discussed under “construct validity” above, but other types of
triangulation (observer triangulation, methodological triangulation, and
theory triangulation) was not implemented.

External Validity
As this was a single case study, the findings reported can be characterized as
lessons learned from an interesting case. There is no formal foundation for
claiming general applicability – the case may have been extreme and unique
in some sense – but with some argumentation the experiences should be
useful for other organizations as well.

3.3.2 Phase Two: Survey of Integration Literature
To really investigate whether my experiences were unique in published
research, I made a thorough literature survey. Systematic literature review
methods have been proposed for the purpose of finding evidence for a
specific research question [190,356]. This involves creating a systematic
protocol and documenting the search. In an exploratory search done in order
to identify and profile a research field, there are some limitations with this
type of reviews. A practical limitation is that the search terms cannot be very
specific, and the very large number of hits must be filtered very rapidly.
Another difference is that an exploratory literature review is qualitative
rather than quantitative, which calls for interpretative and more creative
analysis and argumentation. Nevertheless, being systematic and
documenting the process, and implementing reviews by an additional
researcher should increase the construct and internal validity as well as
reliability of the literature review.
The conclusion was that no literature is to be found directly addressing the
topic of in-house integration.

34 Chapter 3: Validity of the Research

Construct Validity, Internal and External Validity
In this type of literature study, the topic being studied is the occurrence of
publications on a topic, so construct validity seems not to be an issue7.
Internal validity is satisfactory, as the distance is very small between the
actual data (all referred literature) and the claim that the topic of in-house
integration is little researched. General validity also seems not applicable to
this type of study, as no general claims for certain types of objects are made.

Reliability
The study was to be systematic, so I prepared a reading list, empty at first. I
planned the sites and databases where the search would start, and noted
down the keywords I considered should lead to the relevant literature. For
each search (one keyword in one database), the titles of all the hits were
scanned, and most abstracts read. All hits that seemed interesting were added
to the reading list. When actual papers were studied, all interesting
references were added to the reading list. When the list was empty, this
reading algorithm made me confident I had made an exhaustive search and
found anything of interest.
The databases and sites searched were (in alphabetical order): ACM Digital
Library [16], Amazon [8,9], CiteSeer [67], ELIN@Mälardalen (a search
engine at my university, which searches several databases simultaneously),
Google [121], IEEE Xplore [158], Kluwer and Springer journals [353]. The
keywords used in the search were: “integration”, “interoperability”, “reuse”,
and “merge”. The concrete result of this phase was a conference paper [212]
with some one hundred references; this has been reworked into section 4.1 of
the thesis. (I have no recorded figure of how many hits was actually scanned,
neither of the total items in the reading list as it was continuously changing
as items were added and removed; but there were hundreds of interesting
hits, and due to the page limit for the conference paper not all of them were
eventually used).
There is of course the possibility there is an important database with
literature I have not been aware of, and which none of the papers found
referred to. There is also a possibility that the wrong keywords were used,

7 In other studies where databases are searched for information, ensuring construct validity

may be more difficult, since is it is quite possible that the database does not accurately
reflect the construct being studied (e.g., in a crime database one would not find all crimes in
a given area and time interval, only the reported crimes).

Rigor and Validity in Each Research Phase 35

that there is a body of knowledge with another terminology than what I was
looking for. It is also possible that some important references were
overlooked because of the human factor – I might have been very tired after
scanning 499 titles so that I missed how promising the five hundredth would
seem. I studied newer publications more carefully than older, with the
motivation that I wanted to mirror the newest research. By searching mainly
in article databases, textbooks are found only indirectly (via references in the
papers found). It is therefore possible that older, seminal references,
especially in the form of textbooks no longer in print, are missing.

3.3.3 Phase Three: Multiple Case Study
After the exploratory case study of phase one and the literature study of
phase two, which together hinted at this being a new, relevant research topic,
the most natural step was to continue collecting experiences from industry,
and perform a broader study including several cases. As phase three, a
multiple case study [403] was designed, where people in industry were
interviewed (the questions are reprinted in Appendix B, and all copied out
interview notes are found in a technical report [219]). All in all, 18
interviews in 9 different cases in 6 organizations were conducted. For each
case, one to six open-ended interviews have been carried out with people
deeply involved in the merge process and the systems, such as project
managers, architects, and developers. In addition, some documentation has
been available for some cases, and in one case (the same as in phase one) the
author has been participating during two different periods. This study is the
basis for Paper II. The cases are presented in Paper II, section 2.2 (and in
more detail in the technical report [219]), and the rest of this section presents
the research method, in particular how threats to the different types of
validity were addresses. The text in this section is heavily based on the
technical report [219].
Data collection was prepared by writing a set of interview questions,
including a description of the purpose of the research (included as Appendix
B). This was in most cases distributed to the interviewees in advance of the
interviews, although in most cases the interviewee had not studied it in
advance. The author prepared the questions, and two senior researchers
reviewed these questions before the interviews started. Interviews has been
considered the main data collection method, common to all cases, but as
described earlier, other sources of data has been used as well when offered.

36 Chapter 3: Validity of the Research

To collect the data, people willing to participate in the interviews were found
through personal contacts. The interviews were to be held with a person in
the organization who:
1. Had been in the organization and participated in the integration project

long enough to know the history first-hand.
2. Had some sort of leading position, with first-hand insight into on what

grounds decisions were made.
3. Is a technician, and had knowledge about the technical solutions

considered and chosen.
All interviewees fulfilled either criteria 1 and 2 (project leaders with less
insight into technology), or 1 and 3 (technical experts with less insight into
the decisions made). In all cases, people and documentation complemented
each other so that all three criteria are satisfactory fulfilled. Interviews were
booked and carried out. Robson gives some useful pieces of advice
concerning how to conduct interviews in order to e.g. not asking leading
questions [313], which I have tried to follow. In some cases, the interviewees
offered documents of different kinds (refer to the technical report [219] for
more details).

Construct Validity
Multiple sources of evidence have been used as follows: for some of the
cases, there are two or more interviews, and in some cases there are
additional information as well (documentation, and/or personal experience
with the systems and/or the organization). For others, one interview is the
only source of information (which is clearly a deficiency). To some extent,
this can be explained by the exploratory nature of the research, and also that
the desire was to find a proper balance between the number of cases and the
depth of each. The interviewees have also been invited to a workshop where
pending results were discussed.

Reliability
Yin’s [403] two pieces of advice have been followed carefully to ensure that
someone could repeat the study:
• Use case study protocol. The case study protocol can be described as a

workflow:
1. Keeping track of who refers to who until an appropriate person in an

appropriate project to interview is found.
2. Booking and carrying out the interview. Interview notes are taken.

Rigor and Validity in Each Research Phase 37

3. As soon as possible the notes are copied out (sometimes the same
day, but in some cases more than two weeks afterwards).

4. The copied out notes are sent to the interviewees for review. This
has several purposes: first, to correct anything that was
misunderstood. Secondly, to consent to their publication as part of a
technical report (considering confidentiality – in several cases the
organization do not want to be recognized). Third, in several cases
some issues worth elaborating were discovered during the copy-out
process, and some direct questions are typically sent along with the
actual notes. These thus reviewed, modified and approved notes are
used as the basis for further analysis.

5. After some initial analysis, the interviewees (and a few other people
from the same organizations, or who have otherwise showed interest
in this research) have been invited to a workshop where the
preliminary results are presented and discussed, giving an extra stage
of feedback from the people with first-hand experience.

• Develop case study database. All notes (even scratch notes on papers,
notes taken during telephone calls etc.) are kept in a binder for future
reference. Also, any documentation is put in the same place. In order to
be able to achieve the workflow described above, the stage of the
workflow for each (potential) case is informally noted in an Excel sheet
(date of last contact, action to be done by whom). All copied out
interview notes are stored in a CVS system.

Internal Validity
To ensure accurate descriptions of data (i.e. interview notes), “member
checking” was used; this means that all interviewees have reviewed (and
edited) the copied out interview notes. Several types of triangulation
[96,403] were employed to increase the internal validity: data triangulation
involved interviewing several people in the same case and using several
types of sources in some cases (documentation and personal experience in
addition to the interviews). Observer triangulation was employed in one
case, where a fellow researcher participated during the interview, and also
reviewed the copied out notes.

External Validity
The main purpose of studying several cases is to achieve a higher degree of
external validity. It should arguably be less likely that several cases are
included that are extreme in the same way, than when studying a single case.
The cases include both larger and smaller organizations, and the software

38 Chapter 3: Validity of the Research

belongs to several types of domains (see Paper II for details). The cases are
theoretically replicated [403] (or analytically generalized [313]) so that there
are several indications supporting the same theoretical proposition (e.g. that
performing activity X is beneficial).

3.3.4 Phase Four: Single Case Study and Formal Model for
Merge
One of the cases in phase three was followed up, as it was the case that most
clearly implemented the Merge strategy. This study was thus a single case
study [403], which was carefully selected as an extreme case in a good
sense, illustrating how the Merge strategy could actually be implemented.
Based on the knowledge of the case gather during phase three, interview
questions were designed (reprinted in Appendix C) and this time I met
personally with all five developers involved in the two systems (distributed
on two continents) and made interviews. I was also given high-level
documentation of the Swedish system. The case is further described in Paper
V, and in more detail (including the copied out interview notes) in a
technical report [208]. The rest of this section describes the research method,
in particular how threats to the different types of validity were addresses.
The text in this section is heavily based on the technical report [208].

Construct Validity
By conducting several interviews, and having some documentation
available, there were multiple sources of evidence.

Reliability
Yin’s [403] two pieces of advice has been followed as follows:
• Use case study protocol. The case study protocol can be described as a

workflow:
1. Formulating research questions and discussion agenda.
2. Booking and carrying out the interview. Taking interview notes.
3. Copying out the notes (sometimes between the same day and three

weeks afterwards).
4. Sending the copied out notes to the interviewees for review. This has

several purposes: first, to correct anything that was misunderstood.
Secondly, to consent to their publication as part of a technical report,
considering confidentiality. Third, some issues worth elaborating

Rigor and Validity in Each Research Phase 39

may be discovered during the copy-out process, and some direct
questions will then typically sent along with the actual notes. These
thus reviewed, modified and approved notes are used as the basis for
further analysis.

• Develop case study database. All notes are kept in a binder for future
reference. All copied out interview notes are stored in a CVS system.

Internal Validity
As in phase three, it has been ensured that descriptions of data (i.e. interview
notes) are accurate through “member checking”, i.e. all interviewees have
reviewed (and edited) the copied out interview notes. Several types of
triangulation [96,403] were used to increase the internal validity: data
triangulation involved interviewing several people in the same case and
using several types of sources in some cases (documentation and personal
experience in addition to the interviews).

External Validity
The case was the most illustrative and interesting example from a known set
of cases (the nine cases of phase three). The other cases of phase three form
a sort of background to the selection of this case, and the assumptions and
conclusions of the study in phase four are (explicitly) influenced by these
other cases. However, there must also be convincing argumentation for
external validity. To some extent I believe this phase should be seen as a
starting point for future research, preferably by implementing the findings in
future cases and evaluate the outcome. In this way, limitations of the current
propositions would be found.

3.3.5 Phase Five: Questionnaire Validating and Quantifying
Earlier Findings
A questionnaire was designed to collect quantitative data for the previously
qualitative observations. By correlating the responses to several questions,
the questionnaire would also to some extent validate these previous
observations. Therefore, a questionnaire was designed consisting of a
number of questions with five-grade scales. The questionnaire was
distributed to six of the previous and two additional cases. By returning to
the previous cases, some amount of internal validation of our previous
interpretations (in terms of theory construction) is ensured. If the
respondents would describe the cases in a very different way from what we

40 Chapter 3: Validity of the Research

have done based on the previous interviews, it is a sign that the theory is a
bad representation of the reality. By administering the questionnaire to some
cases that were not part of the previous study, we get an indication whether
the theory extracted from the previous cases makes sense at all.
The questionnaire form is reprinted in Appendix D and the collected data in
Appendix E. The responses were analyzed and published as a conference
publication [222] which is included as Paper IV.

Construct Validity and Reliability
There are databases with e.g. all companies registered in Sweden which are
typically used to define a population and retrieve a random sample from for
similar kinds of surveys. However, the problem in this case is that it is
difficult to formulate the population in terms of the information found in
these databases. There are no entries for newly merged companies, so one
would have to make some assumptions concerning whether company names
and organization numbers are identical or change compared to previous
years etc. Also, we are interested in the software development activities
within a company, which could be found in virtually any business domain,
and the size of the company would not necessarily hint at the size or
importance of the software department. In addition, we are not only
interested in commercial companies, but other types of organizations as well,
such as governmental departments or regional official organizations.
Although not necessarily impossible, it would require much research and
assumptions only to define a population.
Instead, we once again chose to rely on convenience sampling, i.e. calling
and talking to people and organizations we considered were likely to have
gone through a significant integration effort. We returned to our previous
cases as well as pursued some contacts in other organizations. In the
previous cases, we tried to get access to more people than we had
interviewed before.
The cases and respondents are summarized in Table 1, together with the
number of interviews made in our previous study.

Rigor and Validity in Each Research Phase 41

Table 1: The Cases and Distribution of Respondents
Case Organization System Domain Number of

respondents
(previous
study)

A Newly merged international
company

Safety-critical
systems with
embedded
software

1 (1)

B National corporation with
many daughter companies

Administration of
stock keeping

1 (1)

C Newly merged international
company

Safety-critical
systems with
embedded
software

1 (2)

D Newly merged international
company

Off-line manage-
ment of power
distribution
systems

0 (2)

E1 Cooperation defense
research institute and
industry

Off-line physics
simulation

1 (1)

E2 Different parts of Swedish
defense

Off-line physics
simulation

1 (1)

F1 Newly merged international
company

Managing off-line
physics
simulations

0 (3)

F2 Newly merged international
company

Off-line physics
simulation

1 (6)

F3 Newly merged international
company

Software issue
reporting

0 (1)

F4 Newly merged international
company

Off-line physics
simulation

1 (0)

G Newly merged international
company

Database-
centered system

2* (0)

 Total number of
respondents:

9 (18)

* The respondents are labeled Ga and Gb in the appendices.

42 Chapter 3: Validity of the Research

In this kind of study, construct validity can be divided into several
requirements: convergent validity means that all items forming the construct
should be concurrent, and discriminant validity means that no item should be
indicative of more than one construct within in the same setting. When these
requirements are fulfilled for all constructs in the same setting, they can be
evaluated for nomological validity, which means that they actually reflect
the theoretical ideas about the phenomenon.
Internal validity is ensured by our documenting the study in a technical
report [221], which includes reporting the questionnaire (also found in
Appendix D), the characteristics of the respondents and cases studied (to the
extent confidentiality agreements allow), and the responses (in Appendix E).

Internal Validity
Twelve cases were contacted, with a total of around 25 people, to ensure at
least one response from most cases. We received responses from eight cases,
nine people. The response rate was thus 2/3 of the cases, and ca 1/3 of the
potential respondents. Our conclusions per case are therefore sensitive to
individual responses, but conclusions where all responses are summed are
less sensitive. We expect to continue distributing the questionnaire to more
cases and respondents in the future, and the current data should only be seen
as preliminary indications.

External Validity
Ideally, the sample size in a quantitative study should be considerable – in
this case, hundreds of organizations should be studied. A large sample is
needed to give statistical confidence in the findings, and enables statistically
significant analyses concerning differences between large and small
companies, business domains etc. However, the relative size of a sample
needed for a certain confidence level drastically decreases as the size of the
population increases.

3.4 Overall External Validity
The research of this thesis can to a large extent be classified as empirical
science, but there is an important interpretative element as well (e.g. by
providing idealized concepts in order to discuss and explain observations),
and also an element of formal reasoning. The research has been mostly
qualitative but has also included a phase of quantification of earlier results. It
has also included one iteration of validation of earlier results, which means

Overall External Validity 43

that they are supported rather than falsified. In each phase, an appropriate
research method has been chosen, and the recommendation how to
implement it rigorously and systematically has been followed as far as
practically possible. The most serious limitation of the result is of a practical
nature, in the number of cases studied and the volume of data for some cases
(only one interview). With these limitations in mind, a satisfactory amount
of validity can be claimed.
Further studies are needed to show to what extent the results are general for
a large set of organizations, and to what extent observations and guidelines
are dependent on factors such as system domains and sizes of organizations.

44 Chapter 3: Validity of the Research

Chapter 4. Related Work

This chapter relates the research in this thesis to relevant research and
practice, subdivided into three parts. The topic of the thesis – in-house
integration – is first related to other types of integration in section 4.1. The
existing literature and practice of my two points of view are then surveyed:
software architecture in section 4.2 and software processes and people in
section 4.3 throughout. The focus is on describing the existing research most
relevant for this thesis, and relating this research to the existing research and
practice throughout. At the end of each of these three sections, this thesis is
explicitly positioned with respect to the related fields.

4.1 Software Evolution and Integration
This section starts with a brief overview of the area of software evolution,
and focuses then on various aspects of software integration. This text is
based on my earlier surveys of the fields: evolution in [206] and integration
in [212].

4.1.1 Fundamentals of Software Evolution and
Maintenance
The term “evolution”, when applied to software, usually means that a system
is modified and released in a sequence of versions [237] (although it is
sometimes used e.g. for the self-modification of programs or for
evolutionary programming techniques such as genetic algorithms [20,266]).
For any software system that is being used, its context evolves: businesses
evolve, societies evolve, laws and regulations evolve, the technical
environment in which the software executes and is used evolve, and the
users’ expectations of the software evolve. Therefore, new features and
improved quality will be required to keep up with a changing environment
and changing user expectations [53,236,237,302]. The term “maintenance”

46 Chapter 4: Related Work

usually means making relatively small changes, and can be classified into
perfective maintenance, corrective maintenance, preventive maintenance,
etc. [156,296,305,352]. There is, however, not a clear border between these
– or between maintenance and further development – in spite of efforts to
define them and create different process models [171]. As these changes
accumulate, we call it evolution.
If a system is evolved with tight time schedules, and insufficient time or
knowledge of the original design ideas, or insufficient time to revise those
fundamental design choices consistently, the conceptual integrity [54] of the
system will be violated and deteriorate (or “erode” or “degrade”)
[24,42,167,299,350,381]. Complexity will increase unless work is done to
reduce it [236]. This is a difficult but unavoidable problem: successful
systems need to be evolved in order to stay successful, but while being
evolved they typically deteriorate and become increasingly difficult for
humans to understand and modify further – unless this is proactively
managed [380]. The long term optimum should be a proper balance can be
found so that maintainability is maintained [205,310], but there are still
many challenges to be addressed [264]. When modifying a system it is
important to understand the rationale behind a system’s design in order to
avoid design deterioration [50,232]. Maintenance is not only a post-
deployment activity but should be carefully planned already during system’s
development [174,305]. For anticipated evolution, the architecture can be
devised so that certain updates are made easier, in the form of decentralized,
post-deployment development of add-ons, scripts, etc. [292]; there are even
approaches to update systems in runtime (based on its componentized
architecture) [293].
The software organization itself, including its tools and processes, affect
how well it performs in maintaining and evolving its software
[156,172,191,240,310]. Not only the actual software is subject to
maintenance; maintenance could also involve other artifacts such as the
software’s documentation [3,174,203]. There are process and maturity
models addressing maintenance [13,126,161,173]. Certain system
characteristics are considered to influence the required support and
maintenance efforts (some proposed measures are reviewed below), but
these can be understood only in the light of the relation between the system
and its stakeholders (both users and maintenance staff) [64,172,191,240].
There is also much research on how various characteristics of the software
itself influences how easy it is to maintain (consider e.g. terms such as
maintainability, modifiability, extendability, flexibility, and portability
[24,31,154,408]). Large size and high complexity are often considered

Software Evolution and Integration 47

making a program difficult to understand, and consequently difficult to
modify. There is not a single definition or measure agreed upon, although
many measures have been proposed. These include source code measures
(including Lines Of Code (LOC), number of statements, numbers of
commented lines, and control structure measures
[3,14,75,224,285,286,389,408], and various complexity metrics
[3,131,256,286,337,338]. The Maintainability Index (MI) aggregates several
of these measures into one [286,339]. There are also proposed measures at
the architectural level, such as variants on number of calls into and number
of calls from a component (“fan-in” and “fan-out”)
[30,108,124,140,165,224], These are static measures; tracking changes in
these between versions could be a way to monitor software deterioration
[14,75,205,234,235,311,312,370].
Software evolution results partly from small changes (maintenance) being
accumulated, but also from more drastic changes made at various stages in a
system’s life [237]. For example, web-enabling a system [168], moving from
batch execution to real-time service [223] and/or componentizing an existing
system [142,168,262] represent such major leaps – as do in-house
integration.
There is literature how evolution has been addressed at the architectural level
[66,169,260], not least in the form of architecture level evaluation methods
based on change scenarios [24,31,70,181,195,247] (see also section 4.2.5 on
architectural evaluation). In this context, the field of reengineering can also
be mentioned, which includes e.g. how to extract architectural structure from
source code [25,46,46,62,127,327,370].
The rest of section 4.1 concerns the particular types of evolution that is
related to integration.

4.1.2 Software Integration
The IEEE Standard Glossary of Software Engineering Terminology [154]
defines integration as “the process of combining software components,
hardware components, or both, into an overall system”. The fundamental
concepts of interfaces, architecture, and information and their relation to
integration are first briefly described, followed by surveys over existing
fields of research which in one way or another involves integration of
existing software.

48 Chapter 4: Related Work

Interoperability is the ability for two or more software systems or
components to communicate and cooperate with one another despite
differences in language, interface, and execution platform [388,393]. To be
able to do this, components need to have the same understanding of their
interface, i.e. the “shared boundary across which information is passed”
[154] or “ a point at which independent systems or components meet and act
or communicate with each other” [123,322]. An interface in this wide sense
in practice includes such different technical solutions as function signatures,
shared memory and variables, protocols for transactions, and file formats.
When two software systems or components are to be integrated, there is a
risk that their understanding of the shared interface is incorrect. For example,
there is a problem if two components each assume they control the overall
execution of the system and will call other components upon demand. This
“architectural mismatch” as it has been called [112,115] will result in system
malfunction, or no possibility to integrate at all. Architectural mismatch has
been noted not only when complementary components are to be integrated,
but also when two object-oriented frameworks [44,106,107] – structures
assuming to be in charge of the high-level design decisions – are used
simultaneously [253]. A survey over the field of architectural mismatch
gives by hand the research is relatively immature [36]: there is more research
to be found on how to detect mismatches [32,89,90,102,400] than how to
solve them, and these approaches are typically not validated in a
commercial, large-scale industrial environment. Some interaction
mechanisms could be deferred until integration [93]. Some design patterns
[113] and architectural patterns [58,110,189,329] address reuse, maintenance
and evolution, but there is to my knowledge only little research on design
patterns facilitating integration [186,244,402].
A standard architecture into which other components and systems can be
plugged may be a viable integration solution within a specific domain. This
requires a vendor strong enough to develop an implementation of the
architecture, and successfully market it, such as ABB with its Industrial IT
architecture [49]. Without a strong vendor, architectures may still be the
integration enabler by means of a standard reference architecture (reached
through common consensus) [265,343]. Component models such as
CORBA, COM, J2EE, Koala and .NET – some of which are proprietary and
some are defined by common consensus – embed architectural decisions and
may be considered middleware architectures facilitating interoperability
[404].
To be able to integrate systems, the systems’ views of the data – i.e. their
data models, taxonomies, or ontologies [128] must also be integrated, an

Software Evolution and Integration 49

undertaking not so trivial [152,206,287,306,358]. Geographic Information
Systems (GIS) [57,243] is one significant example of a domain where
ontology integration has attracted attention [72,283,345,385]. Closely related
is the integration of databases, i.e. repositories implementing ontologies.
However, the literature to be found is typically fairly old; the problem is
today considered part of the Enterprise Application Integration (EAI)
approach presented in section 4.1.5.

4.1.3 Component-Based Software
In the field of Component-Based Software Engineering [19,80,138,323,362]
software components are viewed as black boxes with contractually specified
interfaces. By building a system from pre-existing components, systems
could be built faster and cheaper, with the same or higher quality of a system
built in-house [83,138,362]. There is a strong focus on explicit interfaces
[19,83,138,265,342,362,387], which – to enable true interoperability – must
be specified and implemented according to common rules. Component
models are such sets of rules, supported and enforced by component
technologies, such as CORBA Component Model [351] (a standard from
OMG [288] with several vendor-specific implementations), Java 2 Enterprise
Edition (J2EE) [269,314] (originating from SUN Microsystems), and COM
[47] and .NET [365] (from Microsoft).
The existence of such common integration rules has provided the foundation
for a component market where components are developed and used by
different organizations, so called “off-the-shelf” (OTS) or “commercial-off-
the-shelf” (COTS) components [265,387]. Even when a system is
completely developed in-house, a component-based approach may be
chosen: a product line approach [69] means that there is a strategy for
internal development of components to be reused in a familiy of products
with certain similarities. This approach poses new challenges to the software
community, e.g. mechanisms for variability to enable evolution of the
products of the product line [361], new and stronger mechanisms to track
changes to prevent the common assets from degradation [167,360],
configuration management to control product derivation and evolution at the
same time [375,376], and how to use stakeholder scenarios to evaluate the
suitability of a product line architecture [195]. It is of course also quite
possible to develop a single system completely in-house according to the
component-based paradigm and utilizing an existing component model [45]
(this is further discussed in section 4.2.2).

50 Chapter 4: Related Work

The current component models make integration at the function call level
relatively straightforward, but Interface Definition Languages (IDLs) can
typically only achieve syntactic interoperability [175,394], which is not
enough to make two components interact as desired [388,404]. To ensure
true interoperability between systems or components, the semantics must be
specified as well [137,249,281,388].
There are some challenges left for the component-based research
community. If a component is updated, this may have unpredicted system
effects, often due to subtle semantic differences, which calls for new types of
evolution support and configuration management techniques [225,227,375-
377]. Using third party components in a long-lived system creates an
undesired dependency regarding maintenance, updates, error corrections, etc.
There is not yet a standardized way of certifying component quality and
behavior although there is research on how it could be achieved
[83,143,226].

4.1.4 Standard Interfaces and Open Systems
An open system is defined as a set of components with interface
specifications fully defined, available to the public, maintained according to
group consensus, and in which the implementations of components are
conformant to the specification [265,342]. Anyone may produce (and profit
from) implementations of that specification. (There are also other notions of
“openness”, less relevant for this thesis, e.g. focusing on mechanisms that
allow for third-party extensions of the system [272].)
The notion of open standards is widespread. Major organizations for
software standards are ANSI [12], IEEE [157], and ISO [160]. Open systems
with standard interfaces (in the form of protocols) are prevalent in computer
networks and telecommunications, where customers’ requirements on
interoperability between vendors is one of the major driving forces
[130,278]. Other fields in similar contexts, where systems from different
vendors need to interoperate and exchange information are Geographic
Information Systems (GIS) [56,72,187,231,283,364,371] and hypermedia
[10,11,88,152,267,390] to mention a few. Application domains with an
identified need to create their own standard interfaces for interoperability
include – just to illustrate the applicability of the approach – public libraries
[294], mathematical computations [230], and photo archives [197].
Interoperability through standardized interfaces is also a concern of software
agents [231,396]. Although autonomous, agents need to communicate and

Software Evolution and Integration 51

exchange data, and to enable interoperability between agents developed with
different technologies this needs to be done in a uniform manner [231].
XML [133,399] has become a popular encoding language which may be a
common denominator of systems and used for integration [11,65,92,399].
From an integration point of view, the importance of standards applies not
only to interfaces but domain-specific architectures as well (see discussion in
section 4.1.2).
It is by definition impossible to demonstrate interoperability capabilities in
isolation, i.e. without specifying something concrete a component should
interoperate with. Conformance testing is carried out to show conformance
to a standard, while interoperability testing means testing whether two
products (said to adhere to the same standard) actually work together as
intended [188]. Conformance to a standard is in practice not enough to
ensure interoperability between two implementations [55,238,255].
There appears to be two major reasons for building systems based on
standard interfaces. First, building open systems is suitable when an
integrator wants to avoid being dependent on a single vendor [104,315].
Second, when there is no single integrator, the only possibility to make
different components and systems interoperate is to ensure they conform to a
standardized interface [294].
To have a practical impact, standards need implementations. A drawback
(from the interoperability point of view) with standards is the commercial
marketplace itself with the option for implementers to adhere to standards or
not – the choice depends on commercial forces. Another drawback is that
reaching consensus often takes a long time, and both vendors and acquirers
may need to act quickly in order to produce products and integration
solutions on time [239]. This may lead to a number of similar but
incompatible de facto-standards. Also, a vendor strong enough may provide
an implementation violating the standard and force its competitors to follow.

4.1.5 Enterprise Application Integration (EAI)
Enterprise Applications are systems used to support an enterprise processes
(e.g. development, production, management), such as Enterprise Resource
Planning (ERP) ERP systems [48,84,233,282] systems such as SAP R/3
[324], Product Data Management (PDM) and Software Configuration
Management (SCM) systems [81], and electronic business systems e.g. for
business to business relationships, B2B [242,401]. As enterprises need to

52 Chapter 4: Related Work

streamline their processes to be competitive there is a need for integrating
these systems [134,229] to make information consistent and easily
accessible. The typical solution is “loose” integration, where the system
components operate independently of each other and continue to store data
in their own repository [129]. Since building unique interfaces between each
pair of systems that needs to communicate is not cost efficient [104],
numerous systematic approaches are used to enable a more structured
integration of enterprise applications [134,233,244,358]. These are
collectively called Enterprise Application Integration (EAI)
[84,169,241,242,317] and include activities such as new types of
requirements engineering [368], data mining and reverse engineering [5] and
content integration [358] (to understand the existing data and systems),
migration [52] (to get rid of the most problematic technologies and
solutions), using a common messaging middleware
[51,241,242,258,317,404] (of which there are many commercial solutions),
and encapsulating and wrapping legacy systems in a component-based
approach [328]. The market for application integration and middleware
(AIM) is estimated to $6.4 billion worldwide in 2005 and is expected to
continue growing [79].
EAI requires a high degree of commitment, coordination, and upfront
investments [233]. EAI may break down when integration occurs between
enterprises, when data is operational rather than historical, and more
unstructured data need to be integrated [358]. And the integration problem
continues: although systems to be integrated may use commercial
technologies supposed to support integration and interoperability, these
integration-enabling technologies are often not fully compatible, and
therefore the need arises to integrate these integration technologies [122].

4.1.6 Product Integration
Product integration is the part of systems engineering when the individually
developed parts of a system is assembled into a whole [73,103,228,322]. In
this context, the system is often designed top-down, after which follows the
implementation of the various parts (and possible acquisition of existing
components), which are then integrated [103]. The integration activity
should not only be carried out solely in the end, but should preferably be
carried out throughout development; there is e.g. the practice of building the
product daily, performed in order to get early indication of integration
problems [257,284]; this will also give a hint of the emergent system

Software Evolution and Integration 53

properties. Interface specification and coordination are important activities
[73,103,123], and a systematic implementation of the component-based
paradigm enables parallel development and (hopefully) smooth integration
[228].

4.1.7 Merge of Development Artifacts
As development artifacts are branched and developed in parallel, there is a
need to merge them – this is typically an integral part of a software
configuration management system [34,263]. There are many methods and
algorithms for doing this, the simplest kind of which is a textual comparison
and merge; these are generally applicable but can only resolve very basic
conflicts however [263]. By narrowing down the application domain to e.g. a
specific programming language, it becomes possible to perform a syntactic
merge [263]; also resolving semantic conflicts is more difficult, and it is in
general an undecidable problem [33,372]. The parallel development
branches may be refactored differently, which gives rise to structural
conflicts which need to be resolved in order to enable a merger at this higher
level; this however seem to be a largely open research area [263,379].
In practice, the larger the difference between two development branches,
much more user feedback and coordination is needed to resolve the conflicts
than if the same changes are being made but the conflicts are frequently
resolved and the branches merged [15,263,304]. (This means, extrapolated
for the in-house integration context, that when merging two systems that
have evolved independently for many years – and perhaps had nothing in
common to start with – the available merge algorithms would be essentially
useless.)

4.1.8 Positioning this Thesis in the Context of Software
Evolution and Integration
Software evolution is a consequence of changes being accumulated, both
small and large; in-house integration represent a major change in direction
for a system. Existing research on integration usually considers integration
of components complementing each other (rather than creating one entity out
of two, as is the case in in-house integration). An important rationalization
goal for in-house integration is reduction of the systems to be maintained
and supported, while the surveyed fields aim at acquiring and integrating

54 Chapter 4: Related Work

external components or systems. Also, the organizational context is often
different from in-house integration: typically, these existing fields assume
that the systems or components are developed independently by third parties
– the open systems approach even assume there is no single integrator –
while in-house integration concerns existing systems completely controlled
in-house. The processes are also different compared to in-house integration:
product integration, and to some extent component-based development,
involves a top-down design process. Nevertheless, these fields are applicable
to the in-house integration context to some extent: viewing the internal
structure of components of a system – possibly also componentizing them
first – aids their integration. The existence of standards is also of benefit to
in-house integration (if the standards are adhered to).
Integration in the sense of “creating a single entity out of two (or more)
existing pieces of software” we have found only in two senses: first, it is
discussed for development artifacts (most often source code files). One
prerequisite for any useful merge would be that the systems are written in the
same programming language – possibly it would be possible to first convert
the source code of one system into a functional equivalent in another
language [366]. These approaches however assume many similarities
between the two artifacts – their original purpose is to enable merging
branches of the same artifact. Even in the two studied cases where the
systems have been branched from a common ancestor, they have diverged
for many years. Also, the unit of reuse when merging source code files is
statements or lines of code, which is a far too low abstraction level to be
applied to large complex systems. Finally, the major challenge during in-
house integration is not technical, as it involves complex requirements,
functionality, quality, and stakeholder interests. Second, we have seen the
observation that the usage of two object-oriented frameworks simultaneously
can be expected to bring problems due to conflicting assumptions [253].
Other observations of architectural mismatch are clearly applicable during
in-house integration, although there is little or nothing to be found that
directly can help detecting and solving the mismatches [36]. This research
complements existing reports by identifying particular incompatibility
problems found during in-house integration.
Numerous other surveys of software integration have been published
previously [122,137,169,233,263,295,355,388], each done from a particular
point of view – ours of course with the purpose of investigating the extent to
which in-house integration and this research is unique.

Software Architecture 55

4.2 Software Architecture
This section provides a broad survey over the area of software architecture,
one of the approaches adopted in this thesis to address the in-house
integration challenge. Parts of this section have been adopted from [206].
Today’s notion of software architecture can be traced to early suggestions
that the need for humans to understand a system should guide its
decomposition rather than considerations on e.g. performance [54,99,297].
Object-oriented analysis and design partly addressed this as systems grew
larger [39,163,318]. The foundations of the field of software architecture
were laid [1,95,117,303,349] as the first architectural languages were
designed [245], the need for views [199], the rise of the pattern community
[58,113], special issues of journals [155], and the first books [58,350].

4.2.1 Definitions and Use of Software Architecture
Academic research has focused on software architecture in the sense
“structure of components”. This can be seen in definitions of architecture
[25,58,159,350], in the notion of Architecture Description Languages
(ADLs) and views (see section 4.2.3), and patterns or styles (see section
4.2.4). When viewed as a design tool, this paradigm focusing on structure is
valuable as it raises the abstraction level and discusses the connections
between components explicitly [346]. However, this view is limited; there is
for example limited value in visualizing code structure without knowing the
intentions behind the design [25,40,46,62,127,327,370]. Some texts
emphasize architecture as a set of design decisions [166,378,397], an
important part of which is their rationale [71,159,303] which is important for
maintainers will arguably be able to perform changes efficient and without
violating the conceptual integrity of the system [50,232] (cf. the discussion
in software deterioration in section 4.1.1). Some texts talk about architectural
knowledge [201], and thus turn the notion to architecture being a social
construct, describing architecture as a concise explanation of whatever is
important about a system, or whatever about a system that must be
understood by all developers (possibly agreed upon through group
consensus) [111,200]. Different stakeholders have different needs of an
architecture (and its description) that should be addressed [25,71,159], and
the business and organizational context of a system could also be considered
an essential part of the architecture [289,405,409]. Along this line, the role
of the architect is perhaps as important to discuss as the architecture

56 Chapter 4: Related Work

[100,151,193,252,273,344], and there are associations of architects
[153,398].
Nevertheless, it is in the sense of structure that architecture has been most
researched – possibly because it has proven relatively easy to formalize.
However, it is no longer only tied to the early design phase but plays an
important role during the complete life cycle of a system
[25,43,66,200,301]. In this thesis, this trend is continued by describing the
central role the systems’ architectures plays during in-house integration – not
least its representation and documentation.
An architectural description serves as a communication tool between
stakeholders of the system, so that the e.g. managers, customers, and users
understand a system’s possibilities – and limitations – in areas of their
concern [25,70,71,159]. Architectural descriptions can also be analyzed,
which makes it possible to evaluate alternative architectures before a system
is built [25,68,70,180,182,183] (see section 4.2.5).
There is a correlation between the structure of an organization and that of its
software [77,134]. The integration may occur at different levels, ranging
from data and application to the more difficult levels: business processes and
humans [307]. The “Zachman Framework for Enterprise Architecture” is a
framework within which a whole enterprise is modeled in two dimensions:
the first describing its data, its people, its functions, its network, and more,
and the other dimension specifying views of different detail [405,409].
Another enterprise information systems framework is “The Open Group
Architectural Framework” (TOGAF) [289].

4.2.2 Component-Based Architectures
As described in section 4.1.3, the component-based systems paradigm may
be adopted for systems built completely in-house (i.e. even if third-party
components are used, and no product line is built). By using a component
model, the architecture has to be explicit, interfaces have to be explicit,
interactions are explicit, and the architecture may be loosely coupled [45].
Choosing a component model in effect means that certain architectural
choices are also made, since the different component models are designed
for different types of systems with different requirements [45]: CORBA
[351] (a standard from OMG [288] with several vendor-specific
implementations) is designed for distributed real-time and performance-
critical applications, Java 2 Enterprise Edition (J2EE) [269,314] for
distributed enterprise systems, and COM [47] and .NET [365] address the

Software Architecture 57

desktop domain. These component models have been compared from this
architecting point of view [97,105,404].
For any system, it is very difficult to predict system properties from
component properties, since the system properties are affected not only by
the components themselves but also by their configuration and interaction.
However, thanks to the restrictions posed by a component model system
properties could possibly be aggregated from component properties – if there
is enough information about the components, which for components
developed for the marketplace would require some certification system [143-
147,226,270,354].

4.2.3 Views and Architecture Description Languages
An important aspect of a software system’s architecture is, as said above, its
structure. However, depending on the point of view, it is possible to discern
not only one structure but several, superimposed one upon another [54,298].
This has led to the notion of views, i.e. a “representation of a whole system
from the perspective of a related set of concerns” [159]. When discussing
systems in general, the appropriate term to use is viewpoint [159] or viewtype
[71], which refers to the perspective itself rather than a particular system’s
representation.
There are some viewpoints that seem to be almost universally useful, such as
those of the “4+1 views” where a logical view, a process view, a physical
view, and a development view are complemented and interconnected with a
use case view [199]. There are slightly varying names of essentially the same
viewpoints, such as the suggested conceptual view, execution view, module
view, and code view [58,71,149]. There are also suggestions of additional
views that could be useful in some cases, such as an architectonic viewpoint
[250] and a build-time view [369]. There is research on how to formally
relate elements of different viewtypes [139,271,407]. As a documentation of
a system, an architectural view should not only contain the actual structural
description but also specify which stakeholders and concerns it addresses,
and the rationale for using it [159].
Visual representations are intuitively appealing to humans, and with well
specified syntax and semantics, such an Architectural Description Language
(ADL) also enables formal analysis, and possibly translation into source
code. The Rapide language is both an architecture description language and
an executable programming or simulation language [245]. The Carnegie
Mellon University has constructed several ADLs as part of their research,

58 Chapter 4: Related Work

such as UniCon [350], Aesop [114], and Wright [7]. The research community
have produced many other ADLs with exotic names such as ArTek, C2,
CODE, ControlH, Demeter, FR, Gestalt, LILEAnna, MetaH, Modechart,
RESOLVE, SADL, and Weaves; see e.g. [261,333,336] for further references.
Acme, developed by a team at Carnegie Mellon University is designed to be
an interchange format between other languages and tools [116], but should
possibly be considered as a new ADL in its own right [87]. The Architecture
Description Markup Language (ADML) is an XML representation of Acme
with some extensions and transparent extensibility [291].
Koala is an ADL and component model used at Philips to develop consumer
electronics products such as televisions, video recorders, and CD and DVD
players [382,383]. The Fundamental Modeling Concepts (FMC)
[136,184,185] focuses on human comprehension and supports
representations with three different views: compositional structures, dynamic
structures (behavior), and value structures (data). FMC has successfully been
applied to real-life systems in practice at SAP, Siemens, Alcatel and other
companies, and has also been used in a research project to examine, model,
and document the Apache web server [127,135].
The Unified Modeling Language (UML) originated from object-oriented
design and modeling [41,149,373], but is also used for modeling non-object-
oriented software as well as for systems engineering. Although UML met
some criticism from the architectural community [74] it became the de facto
language used in industry to model architectures [194,198,261]. UML 2.0
[290] provides more capabilities for modeling architectures, and it provides
several extension mechanisms that may be used to support architectural
constructs [41,259,319]. It could still be confusing to use the same notation
for different levels of abstraction [148].

4.2.4 Styles and Patterns
An architectural pattern (or style, or design pattern) is an observed,
recurring way of solving similar problems, which are proven to have certain
general properties [24]. There are generally applicable patterns [58,113] as
well as patterns for various domains, such as distributed systems [329],
resource management [189], and enterprise systems [110]. Attempts have
been made to formalize what constitutes a pattern in a formal language [1],
but so far the great impact of patterns has been at the level of increasing the
knowledge of developers and architects. There are even more ambitious
projects that aim at systematically collecting experiences and patterns from

Software Architecture 59

successful software systems [40]. As with views, styles abstract away certain
elements and emphasize others [71], and it is often appropriate to describe
the same system with several styles simultaneously [25].
There are some styles commonly found in literature. Systems where data
flow is in focus may be described with the pipe-and-filter style
[24,71,349,350,386]; a simple compiler is typically considered a typical
example of a pipe-and-filter architecture [4,350]. A blackboard (or
repository) architecture draws the attention to the data in the system
[24,349,350,386]. In a client-server architecture [24,42,341,349,350,386],
the system is organized as a number of clients (typically not aware of each
other) issuing requests to a server, which acts and responds accordingly.
With a layered architecture, focus is laid on the different abstraction levels in
a system, such as the software in a personal computer [24,42,349,350,386].
An n-tier architecture is typically used for business and information systems
and illustrated as a database at the bottom, a user interface at the top, and
possibly a separate component executing the business logic [25,71,340].
Object-orientation has also been discussed as an architectural style
[24,42,350], but perhaps it is rather a high-level paradigm than a style. The
control loop paradigm for control systems has also been characterized as an
architectural style [350,386]. There are many variants of these styles
differing with regard to e.g. implicit or explicit invocation, and there are also
more styles and patterns listed in literature [58,110,113,189,329].

4.2.5 Architectural Evaluation and Analysis
Before a system is built (or before implementing some changes), one would
like to predict certain properties in advance. If no system yet exists, one need
to analyze architectural models; preferably several alternatives are evaluated
[25,68,70,180,182,183]. Given a description in a formal ADL it is possible
to analyze it statically for consistency and completeness with respect to some
property of interest [7,98,101], or consistent implementation of a style [1], or
to execute or simulate it to assess other properties [6,7,21,22,245].
There are techniques to evaluate system performance based on architectural
descriptions [98,101]. Certain qualities may also be assessed through
simulation of an architectural description [245] or prototyping [21,22].
Formal techniques in which entities are grouped into clusters based on a
similarity measure can be used to analyze software structures and improve
various architectural concerns such as hardware parallelism (if clusters

60 Chapter 4: Related Work

represent nodes) or ease of change (if clusters represent source code
modules) [25,246,268,330,391].
Another type of analyses should be made by involving the system
stakeholders [24,41,42,182,183,196,316]. The Software Architecture
Analysis Method (SAAM) uses stakeholder-generated scenarios to compare
the quality properties of alternative architecture designs [24,70,179,180].
The Architecture Tradeoff Analysis Method (ATAM) is a successor of
SAAM which focuses more on business goals and making tradeoff points in
the architecture design explicit [70,70,183]. ATAM and the Good Enough
Architectural Requirements Process (GEAR) address the practical need for
tradeoffs and “good enough” solutions [331]. The Active Reviews for
Intermediate Designs method (ARID) is appropriate at an earlier stage than
ATAM, as it involves stakeholders to evaluate partial architectural
descriptions, also with the help of scenarios [70]. The quality attribute-
oriented software architecture design method (QASAR) puts architectural
analysis and evaluation in an iterative development context, where a design
that fulfills functional requirements is refined until quality attributes are
satisfactory [42]. Architecture-Level Modifiability Analysis (ALMA) method
focuses on assessing modification efforts of an architecture, also based on
change scenarios [31]. The Cost-Benefit Analysis Method (CBAM) focuses
(as the name suggests) on the trade-offs between costs and benefits which
must often be made early and will be embedded in the architecture [70].
Most of these analysis methods serve as frameworks leading the analyst to
focus on the right questions at the right time, and almost any imaginable
quality attribute could be analyzed; there are e.g. experience reports from
evaluations of modifiability, cost, availability, and performance [70,181-
183,204]. Apart from its direct results in terms of analysis results, these
kinds of informal analysis also increases the participants’ understanding of
the architecture and the trade-offs underlying it [24,182,183].

4.2.6 Positioning this Thesis in the Context of Software
Architecture
For in-house integration, architecture is considered to be anything that is
relevant to discuss about the systems, which could otherwise cause
incompatibility problems during implementation, and which can be
discussed at a high enough level. This includes not only structure, but the
data models has also been identified to be a potential cause of problems, as
has also what this thesis has been labeled “framework” (in a different

Processes and People 61

meaning than object oriented frameworks [170] and component based
frameworks [83]).
The need for representing the architectures of the existing systems has been
emphasized. This could be done using any language that is feasible, meaning
easy to learn and simple to use – to enable rapid construction of alternatives
and their evaluation – while powerful enough to capture the issues of
importance for the specific case. I have largely avoided suggesting any
particular language or view, and I am currently looking for alternatives to the
module viewpoint currently used by the method and tool for exploring
Merge alternatives.
The notion of patterns and styles shows how strong the research focus so far
has been on structure (patterns and styles are restrictions on structure). The
conceptual integrity of a system was briefly assessed in the case study of
research phase one, and includes the existence of simple, well-known,
consistently implemented patterns. In this research, indications where that
two systems often have structures with more similarities than can be
explained by pure chance; possibly, patterns and styles could be an
additional explanation.
For in-house integration, as many alternatives of future systems as is
practically feasible should be developed, and these should be evaluated as
thoroughly as is practically feasible. This could possibly be done by using
elements of the established methods reviewed above. Evaluating
architectural compatibility however is unique to the context of integrating
several systems, and there is unfortunately little published knowledge to
apply [36] (cf. the discussion in section 4.1.2). Our studies have shown the
usefulness of the simple evaluation method of associating implementation
and modification effort to individual components, which enables a
continuous evaluation during exploration of merge alternatives.

4.3 Processes and People
The topics covered so far – evolution, integration and architecture – are
inseparably bound to a process context. The organization has some overall
goals of the integration which must be achieved in reasonable time, by
people with different skills and roles. This section will therefore survey the
field of software processes, and other closely related issues will also be
touched upon, such as the role of an organization and its people.

62 Chapter 4: Related Work

For the purpose of presenting this overview, the word “process” is used for
the activities performed in an actual project – this is what is possible to
observe in a study. The term process is used both for the overall process (as
in “development process”) and sub-processes (such as a documentation
process, an integration process, etc.). Generalized descriptions are called
“process models”, involving abstract activities and stakeholder roles that
need to be customized for a particular project and instantiated as concrete
processes [118,119,162,251,309,352,384]. A brief overview of these is
provided in section 4.3.1, including higher-level models such as maturity
models and process standards. Section 4.3.2 focuses on concrete practices
that are part of many process models at various levels.

4.3.1 Process Models
The earliest and most basic development model is the sequential waterfall
model, according to which there is a strict sequence of development phases:
requirements for the system are first gathered, followed by design and
implementation, integration, testing, and deployment [309,352,384]. With a
proper division into separate system parts, it is possible to develop these
parts in parallel and thus shorten the total development time needed [309],
and conversely: a well modularized architecture may be a requirement e.g.
when development teams are geographically distributed [60,178]. There is
little room for evolution in sequential models; errors introduced in one phase
may easily remain undiscovered until its corresponding verification and
validation phase (often illustrated in a “V”-shaped diagram)
[119,251,309,352,384] – the earlier the error is introduced, the later it is
discovered. Integration is performed in a phase towards the end of
development, when all individual components are assembled into a system,
and is followed by a system test phase; not until this phase is it possible to
observe system properties. By prototyping, and/or performing development
in iterations or increments, the system is being built evolutionary, which
makes it easier to monitor progress, increase customer feedback, and evolve
the requirements and implementation along the way [26,28,37,257,357,384].
With short enough iterations, or small enough increments, early feedback is
provided as of potential integration problems as well as system properties
[228,257].
There are processes with strong roots in a particular technology, most
notably perhaps being object-oriented development [39,163,318]. This has
influenced the Unified Process (UP, further evolved by Rational into the

Processes and People 63

Rational Unified Process, RUP), which utilizes the UML language and
focuses on iterations and incremental development [119,200]. UP and the
agile movement to a large extent build on good practices [26,28], which are
further discussed in section 4.3.2. As industry is turning towards component-
based development, the previously prevalent top-down approach must be
complemented with a bottom-up survey and assessment of existing
components [18,19,35,36,80,82,126,164,176,275]. There may be existing
components to reuse, developed in-house or by some external party, but they
cannot be expected to perfectly match the requirements; this, together with
the difficulty of finding (reliable) information about commercial and open
source software components [17,36,86], means that the development process
must be radically different from the top-down approach, and involve e.g.
prototyping using potential components [35,36,164]. The recent trend of
rapid development and agile processes emphasize the need for customer
involvement and continuously adapting to new requirements [26-
28,257,357] (and also, we can note in the context of this thesis, continuous
integration of work products [257]).
There are models and standards at a higher level, in the sense that they
describe not concrete activities that make up a process, but rather define
terminology and process areas; they typically also discuss the complete
software life cycle process – not only the development process
[73,103,161,162]. An overall goal of these models is to make projects and
their outcomes predictable; actually terms such as “software production” and
“software factory” has been used instead of “development” [119,384].
Typically, these standards and models define different process areas and
their goals, and then suggest the implementation of specific practices
considered to achieve certain goals (these practices are further discussed in
section 4.3.2). The practices implemented in an organization signify its
maturity level, ranging from incomplete (only in the CMMI), performed,
managed, defined, quantitatively managed, and optimizing [73,161].
When the same software process is repeated – as in a manufacturing process
– it becomes possible to analyze it and improve it. Process improvement can
also be viewed as a process, and as such it has its own process models, such
as the Initiating, Diagnosing, Establishing, Acting & Learning (IDEAL)
Model [125,334]. The Six Sigma approach originated in hardware
manufacturing, which focuses on continuous measurement and improvement
of defect rates, is also being applied [335]. The reviewed process models and
standards are typically used to guide such process improvement initiatives,
e.g. by moving up maturity levels [13,73,161,173].

64 Chapter 4: Related Work

These higher-level process models can be criticized for being described at a
too high level while also being inflexible, making them difficult to
implement properly in an organization [59,279]. One can also argue that
these models treat people as parts of a production machine, which suffocates
creativity within an organization [94]. And true, standards and defined
processes intend to raise the skill level from individuals to the organizational
level – but they can never be a substitute for skilled people or proper
understanding of why things are being done. Rather the opposite: a proper
implementation of the EIA-731.1 is explicitly said to include “skilled
personnel … to accomplish the purpose of this Standard” [103].

4.3.2 Good Practices
The available literature suggests many individual practices that are known to
minimize project risk or improve performance. Many of these practices can
be employed somewhat independently, but they also interact.
It is important to provide a productive environment where people feel
comfortable, free from interruptions and background noise [94,257].
Learning should be promoted and the staff’s skills continuously improved
[85,103]. It is essential to provide a constructive atmosphere by focusing on
common interests, creating win-win solutions, and agreeing on objective
criteria rather than protecting positions [257].
To become productive, stakeholder commitment to a project is essential for
success [2,73,126]. To achieve this, people need motivation, which may be
achieved by defining intermediate goals – if they are perceived as realistic
and come at reasonable frequency [257,352,357].
Proper planning involves planning project resources, defining the required
knowledge and skills, assigning team members with appropriate experience
and skills, defining roles and responsibilities and ensuring involvement by
the right stakeholders at the right time [73,251,309,352,384]. Defined goals,
planning and monitoring are essential for project success, preferably with
quantified goals and metrics [73,120]. Project risks must be analyzed and
addressed, early in a project and throughout [73,103,118,309,352].
Whatever work products are produced, verification and validation of these
are a strongly advocated means of quality assurance
[73,103,119,251,309,352,384]. Although automated tools should be used in
testing and analysis of work products (e.g. source code), peer reviews and

Processes and People 65

inspections are essential to increase quality and thus reduce costs in the long
term [73,118,132,257,352].
The agile movement seem to advocate a less formal requirements
engineering, and instead focus on continuous customer involvement [26-
28,357]. This is partly explained by their typical different application
domains and project sizes [38]: the more heavy-weight processes address
large-scale, critical software [73,162], agile methods seem to be most suited
for small-scale projects of non-critical software. Agile methods embrace
change, and continuous redesign and refactoring of the architecture is an
important activity (as opposed to considering architecture design as a
separate early phase) [26-28,109]. It has been suggested that a system’s
architecture plays an important role in all life cycle phases of a system
[25,43,200,301].
As organizations become global, they face the challenge of employing
distributed processes, i.e. where the team members are geographically
dispersed [60,141,178]. There must be technical infrastructures in place that
support collaboration over distance, and there are cultural differences that
need to be understood and properly managed [60,61,126,150]. Meeting in
person regularly is essential, and more formalized legal agreements are
advised [60].

4.3.3 Positioning this Thesis in the Context of Software
Processes
In-house integration presents many process challenges, as reported in
Chapter 2. In this thesis I have chosen to not create a very comprehensive
model, but rather point out some high-level issues to consider and some low-
level practices. This should make the results relatively easy to implement
with little impact on existing process in an organization. An additional
challenge, inherent in the in-house integration context, is that the newly
merged or closely cooperating organizations will also need to integrate their
two different sets of processes, and I do not want to add additional
complexities to this already challenging endeavor.
As the focus has been on the vision process, aimed at outlining the
requirements and architecture for an integrated system, a need for something
in line with the agile movement has been observed, i.e. a rapid, high-level
discussion where it is essential to provide a constructive working
atmosphere. The implementation phase of in-house integration could and

66 Chapter 4: Related Work

should follow any process model the organization is familiar with, while also
considering issues pointed out by this research, such as the need for stepwise
deliveries due to the long time scale of many integration alternatives.
Many suggested practices found in literature were found to be beneficial also
in the context of in-house integration, such as the importance of assigning
the right people and provide constructive atmosphere, and achieve
stakeholder commitment. The vision process is aimed at planning the
implementation process, and the known good practices of project planning
apply here, such as planning resources and schedules, identifying risks, and
ensuring stakeholder participation. The vision process itself also needs to be
planned, and here the need to plan for using the most skilled and
knowledgeable people has been emphasized. Concerning the system
requirements, the presented findings are somewhat different from many
suggested practices found in literature: since requirements engineering has
already been done for the existing systems, it is possible to let users and
other stakeholders evaluate these systems; in this way they will both
formulate requirements and evaluate the existing implementations of these
requirements. A light-weight requirements gathering phase is therefore
advocated, where requirements may simply refer to the existing systems. An
organization embarking on in-house integration is by nature distributed,
which requires awareness of the challenges and practices involved with
distributed teams, often involving different cultures.
The in-house integration process is by nature a process repeated very seldom
within an organization, and it makes little sense to talk about process
improvement. This makes the research of this thesis even more valuable, as
experiences are collected from multiple organizations that help organizations
designing a feasible process and avoid some pitfalls the first time.

Chapter 5. Conclusions and Future Work

The goal of this research has been to develop a systematic approach that will
lead to a more efficient and predictable process for executing future in-house
system integration projects. To achieve this, we have surveyed, evaluated,
and generalized existing practices in a number of organizations, which has
resulted in the formulation of guidelines for the in-house integration process.
The thesis focuses on the early vision process, which should be carried out
relatively rapidly while ensuring enough coverage of the most important
considerations.
One such important consideration is the architectures and compatibility of
the existing systems. If the systems are not sufficiently similar with respect
to structure, data models, and frameworks (including the technologies used),
it is not possible, in practice, to combine their components. Surprisingly,
similarities are more common then what could be expected, however, and
some indicators suggest a certain amount of compatibility: systems more or
less contemporaneous often exhibit similarities, and certain solutions are
often implied and required by domain standards. For many other
considerations, there is no objective way forward to the integrated system;
rather, it is most important to involve the right stakeholders at the right time
(for which we provide some guidelines) while ensuring a balance between
collecting opinions and performing a detailed analysis on one hand, and
rapidly making a decision on the other. What makes the decision-making of
in-house integration exceptional is that the stakeholders initially know their
own system well, but know little of the other existing systems. The existing
systems must be evaluated and alternative integration solutions must be
created in a neutral way, and this thesis contributes to this by presenting
practices of decision-making, evaluation of the existing systems, and
creation of alternatives of a future system that ensure both efficiency and
objectivity. This is difficult, however, because decisions that may be made
are not necessarily in the interest of all persons involved in an in-house
integration.
The thesis provides guidelines at a very high level, as well as at a very
practical level. These guidelines are therefore of value to those integrating

68 Chapter 5: Conclusions and Future Work

in-house software systems because they are compatible with most processes
used in organizations, whether they are plan-driven, agile, or ad-hoc. In this
connection, this thesis is particularly focused on the significant
characteristics of the decision-making phase of in-house integration. The
implementation phase will be more similar to processes with which
organizations are more familiar: development of a new system (or system
parts), evolution of systems towards a desired state, and retirement of
systems; however, there are several challenges specific to in-house
integration in this phase as well. Several processes will be mostly run in
parallel, and they must be properly synchronized and managed. This
becomes more important the tighter the proposed integration solution is. If
an evolutionary merge is attempted, i.e. the existing systems are evolved in
parallel and released separately until the merge is completed, there must be
short-term benefits also for the existing systems. In addition, the inherent
geographical distribution of development teams brings its own set of
challenges.
The research has been carried out systematically and rigorously, which
makes the observations and analyses presented in the thesis reliable. The
main limitations of the general validity of the results are the relatively few
number of cases that have been studied and the bias towards Swedish and
western organizations and cultures; this bias can be discerned in the selection
of cases studied as well as in the (partly unconscious) mindset of the author.
It should also be remembered that at the beginning of this research the focus
was on process aspects and software architecture; other approaches and
viewpoints would likely give different types of answers.
The last research phase – aiming at validating and quantifying the results
gathered so far – could easily be continued, as the data collection instrument
and analysis guidelines have been designed and tested (in the form of the
questionnaire and the analysis already performed and documented). With a
larger number of cases, preferably involving more application domains,
more national cultures – and more cases from the domains and cultures
already represented – the results will be further confirmed. I also welcome
studies of this topic from other viewpoints, such as those of organizational
and decision-making psychology experts and those of other cultures.
At a more detailed level, there are a number of loose threads I consider
would be challenging and interesting to pursue further. First, the
observations made so far concerning the elicitation and documentation of the
requirements of a future system are in my opinion very interesting, and
worth further study as a separate topic. Second, the architectural patterns and
styles of systems could be an additional indicator that the systems are

 69

sufficiently similar for the Merge strategy to be practically possible. Third,
the merge method and tool need to be evaluated for usefulness in realistic
cases. Also, during their further development viewpoints or languages other
than the simple module viewpoint currently implemented should be
considered; in particular, by keeping a use-case view synchronized with
other, more technical views, the architects could more easily communicate
the impact of various alternative designs to the users.

The research topic is pertinent, and in the absence of relevant publications,
we can conclude that it has not previously been studied systematically. The
results presented in the thesis, which have been obtained using sound
research methods, are of considerable potential value to the software
engineering community. As the title promises, the thesis provides significant
guidance in the use of a systematic engineering process for in-house
software systems integration.

70 Chapter 5: Conclusions and Future Work

References

 [1] Abowd G. D., Allen R., and Garlan D., “Using Style to Understand
Descriptions of Software Architecture”, In Proceedings of The First
ACM SIGSOFT Symposium on the Foundations of Software
Engineering, 1993.

 [2] Abrahamsson P., The Role of Commitment in Software Process
Improvement, Ph.D. Thesis, Department of Information Processing
Science, University of Oulu, 2005.

 [3] Aggarwal K. K., Singh Y., and Chhabra J. K., “An Integrated
Measure of Software Maintainability”, In Proceedings of Annual
Reliability and Maintainability Symposium, pp. 235-241, IEEE,
2002.

 [4] Aho A., Sethi R., and Ullman J., Compilers – Principles, Techniques
and Tools, Addison Wesely, 1986.

 [5] Aiken P. H., Data Reverse Engineering : Slaying the Legacy
Dragon, ISBN 0-07-000748-9, McGraw Hill, 1996.

 [6] Allen R. and Garlan D., “A Formal Basis for Architectural
Connection”, In ACM Transactions on Software Engineering and
Methology, volume 6, issue 3, pp. 213-249, 1997.

 [7] Allen R., A Formal Approach to Software Architecture, Ph.D.
Thesis, Carnegie Mellon University, Technical Report Number:
CMU-CS-97-144, 1997.

 [8] Amazon, Amazon.co.uk, URL: http://www.amazon.co.uk/, 2006.
 [9] Amazon, Amazon.com, URL: http://www.amazon.com/, 2006.
 [10] Anderson K. M., Och C., King R., and Osborne R. M., “Integrating

Infrastructure: Enabling Large-Scale Client Integration" , In
Proceedings of eleventh ACM Conference on Hypertext and
Hypermedia, pp. 57-66, ACM Press, 2000.

 [11] Anderson K. M. and Sherba S. A., “Using XML to support
Information Integration”, In Proceedings of International Workshop

72 References

on XML Technologies and Software Engineering (XSE), IEEE,
2001.

 [12] ANSI, ANSI, American National Standards Institute,
http://www.ansi.org, 2004.

 [13] April A., Huffman Hayes J., Abran A., and Dumke R., “Software
Maintenance Maturity Model (SMmm): the software maintenance
process model”, In Journal of Software Maintenance and Evolution:
Research and Practice, volume 17, issue 3, pp. 197-223, 2005.

 [14] Ash D., Alderete J., Yao L., Oman P. W., and Lowther B., “Using
software maintainability models to track code health”, In
Proceedings of International Conference on Software Maintenance,
pp. 154-160, IEEE, 1994.

 [15] Asklund U., “Identifying conflicts during structural merge”, In
Proceedings of NWPER'94, Nordic Workshop on Programming
Environment Research, 1994.

 [16] Association for Computing Machinery, ACM Digital Library, URL:
http://portal.acm.org/, 2006.

 [17] Astudillo H., Pereira J., and Lopéz C., “Evaluating Alternative
COTS Assemblies from Unreliable Information”, In Proceedings of
2nd International Conference on the Quality of Software
Architectures (QoSA), Springer, 2006.

 [18] Atkinson C., Bunse C., Gross H.-G., and Peper C., Component-
Based Software Development for Embedded Systems : An Overview
of Current Research Trends, ISBN 3-540-30644-7, Springer, 2006.

 [19] Bachman F., Bass L., Buhman S., Comella-Dorda S., Long F.,
Seacord R. C., and Wallnau K. C., Volume II: Technical Concepts of
Component-Based Software Engineering, CMU/SEI-2000-TR-008,
Software Engineering Institute, Carnegie Mellon University, 2000.

 [20] Banzhaf W., Nordin P., Keller R. E., and Francone F. D., Genetic
Programming : An Introduction : On the Automatic Evolution of
Computer Programs and Its Applications, ISBN 155860510X,
Morgan Kaufmann, 1997.

 [21] Bardram J., Christensen H. B., Corry A. V., Hansen K. M., and
Ingstrup M., “Exploring Quality Attributes using Architectural
Prototyping”, In Proceedings of First International Conference on
the Quality of Software Architectures (QoSA 2005), Springer Verlag,
2005.

 73

 [22] Bardram J., Christensen H. B., and Hansen K. M., “Architectural

Prototyping: An Approach for Grounding Architectural Design”, In
Proceedings of 4th Working IEEE/IFIP Conference on Software
Architecture (WICSA), IEEE, 2004.

 [23] Basili V. R., Selby R. W., and Hutchens D. H., “Experimentation in
Software Engineering”, In IEEE Transactions on Software
Engineering, volume 12, issue 7, pp. 733-734, 1986.

 [24] Bass L., Clements P., and Kazman R., Software Architecture in
Practice, ISBN 0-201-19930-0, Addison-Wesley, 1998.

 [25] Bass L., Clements P., and Kazman R., Software Architecture in
Practice (2nd edition), ISBN 0-321-15495-9, Addison-Wesley,
2003.

 [26] Beck K., EXtreme Programming EXplained: Embrace Change,
ISBN 0201616416, Addison Wesley, 1999.

 [27] Beck K., Beedle M., van Bennekum A., Cockburn A., Cunningham
W., Fowler M., Grenning J., Highsmith J., Hunt A., Jeffries R., Kern
J., Marick B., Martin R. C., Mellor S., Schwaber K., Sutherland J.,
and Thomas D., Manifesto for Agile Software Development, URL:
http://agilemanifesto.org/, 2006.

 [28] Beck K. and Fowler M., Planning Extreme Programming, ISBN
0201710919, Addison Wesley, 2000.

 [29] Becker H. S., Doing Things together: Selected Papers, ISBN
0810107236, Northwestern University Press, 1986.

 [30] Benestad H. C., Anda B., and Arisholm E., “Assessing Software
Product Maintainability Based on Class-Level Structural Measures”,
In Proceedings of 7th International Conference on Product-Focused
Software Process Improvement (PROFES), pp. 94-111, Springer,
2006.

 [31] Bengtsson P., Architecture-Level Modifiability Analysis, Ph.D.
Thesis, Blekinge Institute of Technology, Sweden, 2002.

 [32] Bernardo M., Ciancarini P., and Donatiello L., “Detecting
architectural mismatches in process algebraic descriptions of
software systems”, In Proceedings of Working IEEE/IFIP
Conference on Software Architecture (WICSA), pp. 77-86, IEEE,
2001.

 [33] Berzins V., “On merging software extensions”, In Acta Informatica,
volume 23, pp. 607-619, 1986.

74 References

 [34] Berzins V., “Software merge: semantics of combining changes to

programs”, In ACM Transactions on Programming Languages and
Systems (TOPLAS), volume 16, issue 6, pp. 1875-1903, 1994.

 [35] Bhuta J. and Boehm B., “A Method for Compatible COTS
Component Selection”, In Proceedings of International Conference
on COTS-Based Software Systems, pp. 132-143, 2005.

 [36] Blankers L., Techniques and Processes for Assessing Compatibility
of Third-Party Software Components, M.Sc. Thesis, Dept. of
Mathematics and Computing Science, Eindhoven University of
Technology (TU/e) and Department of Computer Science and
Engineering, Mälardalen University, 2006.

 [37] Boehm B., Spiral Development: Experience, Principles and
Refinements, CMU/SEI-2000-SR-008, Software Engineering
Institute, Carnegie Mellon University, 2000.

 [38] Boehm B. and Turner R., Balancing Agility and Discipline: A Guide
for the Perplexed, ISBN 0321186125, Addison-Wesley Professional,
2003.

 [39] Booch G., Object-Oriented Analysis and Design with Applications
(2nd edition), ISBN 0805353402, Benjamin/Cummings Publishing
Company, 1994.

 [40] Booch G., Handbook of Software Architecture, URL:
http://www.booch.com/architecture/index.jsp, 2006.

 [41] Booch G., Rumbaugh J., and Jacobson I., The Unified Modeling
Language User Guide, ISBN 0201571684, Addison-Wesley, 1999.

 [42] Bosch J., Design & Use of Software Architectures, ISBN 0-201-
67494-7, Addison-Wesley, 2000.

 [43] Bosch J., Gentleman M., Hofmeister C., and Kuusela J., “Preface”,
in Bosch J., Gentleman M., Hofmeister C., and Kuusela J. (editors):
Software Architecture - System Design, Development and
Maintenance, Third Working IEEE/IFIP Conference on Software
Architecture (WICSA3), ISBN 1-4020-7176-0, Kluwer Academic
Publishers, 2002.

 [44] Bosch J., Molin P., Mattson M., and Bengtsson P., “Object Oriented
Frameworks - Problems & Experiences”, in Fayad M.E., Schmidt
D.C., and Johnson R.E. (editors): Object-Oriented Application
Frameworks, Wiley & Sons, 1999.

 75

 [45] Bosch J. and Stafford J., “Architecting Component-based Systems”,

in Crnkovic I. and Larsson M. (editors): Building Reliable
Component-Based Software Systems, ISBN 1-58053-327-2, Artech
House, 2002.

 [46] Bowman I. T., Holt R. C., and Brewster N. V., “Linux as a Case
Study: Its Extracted Software Architecture”, In Proceedings of 21st
International Conference on Software Engineering (ICSE), 1999.

 [47] Box D., Essential COM, ISBN 0-201-63446-5, Addison-Wesley,
1998.

 [48] Brady J., Monk E., and Wagner B., Concepts in Enterprise Resource
Planning, ISBN 0619015934, Course Technology, 2001.

 [49] Bratthall L. G., van der Geest R., Hofmann H., Jellum E., Korendo
Z., Martinez R., Orkisz M., Zeidler C., and Andersson J. S.,
“Integrating Hundred's of Products through One Architecture: the
Industrial IT architecture”, In Proceedings of the 24th International
Conference on Software Engineering, pp. 604-614, ACM, 2002.

 [50] Bratthall L., Johansson E., and Regnell B., “Is a Design Rationale
Vital when Predicting Change Impact? – A Controlled Experiment
on Software Architecture Evolution”, In Proceedings of Second
International Conference on Product Focused Software Process
Improvement (PROFES), 2000.

 [51] Britton C. and Bye P., IT Architectures and Middleware: Strategies
for Building Large, Integrated Systems (2nd edition), ISBN
0321246942, Pearson Education, 2004.

 [52] Brodie M. L. and Stonebraker M., Migrating Legacy Systems:
Gateways, Interfaces & the Incremental Approach, Morgan
Kaufmann Series in Data Management Systems, ISBN 1558603301,
Morgan Kaufmann, 1995.

 [53] Brooks F. P., “No Silver Bullet”, in The Mythical Man-Month -
Essays On Software Engineering, 20th Anniversary Edition, ISBN
0201835959, Addison-Wesley Longman, 1995.

 [54] Brooks F. P., The Mythical Man-Month - Essays On Software
Engineering, 20th Anniversary Edition (20th Anniversary edition),
ISBN 0201835959, Addison-Wesley Longman, 1995.

 [55] Bub T. and Schwinn J., “VERBMOBIL: The Evolution of a
Complex Large Speech-to-Speech Translation System”, In

76 References

Proceedings of Fourth International Conference on Spoken
Language (ICSLP), pp. 2371-2374, IEEE, 1996.

 [56] Buehler K. and Farley J. A., “Interoperability of Geographic Data
and Processes: the OGIS Approach”, In StandardView, volume 2,
issue 3, pp. 163-168, 1994.

 [57] Burrough P. A. and McDonnell R., Principles of Geographical
Information Systems (2nd edition), ISBN 0198233655, Oxford
University Press, 1998.

 [58] Buschmann F., Meunier R., Rohnert H., Sommerlad P., and Stal M.,
Pattern-Oriented Software Architecture - A System of Patterns,
ISBN 0-471-95869-7, John Wiley & Sons, 1996.

 [59] Cannegieter J. J., “Controlling the Chaos of the CMMI Continuous
Representation”, In Proceedings of 7th International Conference on
Product-Focused Software Process Improvement (PROFES),
Springer, 2006.

 [60] Carmel E., Global Software Teams - Collaborating Across Borders
and Time Zones, ISBN 0-13-924218-X, Prentice-Hall, 1999.

 [61] Carmel E. and Agarwal R., “Tactical Approaches for Alleviating
Distance in Global Software Development”, In IEEE Software,
volume 18, issue 2, pp. 22-29, 2001.

 [62] Carmichael I., Tzerpos V., and Holt R. C., “Design maintenance:
unexpected architectural interactions (experience report)”, In
Proceedings of International Conference on Software Maintenance,
pp. 134-137, IEEE, 1995.

 [63] Chalmers A. F., What Is This Thing Called Science? An Assessment
of the Nature and Status of Science and its Methods (3rd edition),
ISBN 0335201091, Hackett Publishing Company, 1999.

 [64] Chapin N., “Software maintenance: a different view”, In
Proceedings of AFIPS National Computer Conference, pp. 509-513,
AFIPS Press, 1985.

 [65] Chester T. M., “Cross-Platform Integration with XML and SOAP”,
In IT Professional, volume 3, issue 5, pp. 26-34, 2001.

 [66] Christensen M., Damm C. H., Hansen K. M., Sandvad E., and
Thomsen M., “Design and evolution of software architecture in
practice”, In Proceedings of Technology of Object-Oriented
Languages and Systems (TOOLS), pp. 2-15, 1999.

 77

 [67] Citeseer, CiteSeer.IST Scientific Literature Digital Library, URL:

http://citeseer.ist.psu.edu/, 2006.
 [68] Clements P., Kazman R., and Klein M., Evaluating Software

Architectures: Methods and Case Studies, Addison Wesley, 2000.
 [69] Clements P. and Northrop L., Software Product Lines: Practices and

Patterns, ISBN 0-201-70332-7, Addison-Wesley, 2001.
 [70] Clements P., Bachmann F., Bass L., Garlan D., Ivers J., Little R.,

Nord R., and Stafford J., Evaluating Software Architectures, ISBN
0-201-70482-X, Addison-Wesley, 2001.

 [71] Clements P., Bachmann F., Bass L., Garlan D., Ivers J., Little R.,
Nord R., and Stafford J., Documenting Software Architectures:
Views and Beyond, ISBN 0-201-70372-6, Addison-Wesley, 2002.

 [72] Clément G., Larouche C., Gouin D., Morin P., and Kucera H.,
“OGDI: Toward Interoperability among Geospatial Databases”, In
ACM SIGMOD Record, volume 26, issue 3, pp. 108-, 1997.

 [73] CMMI Product Team, Capability Maturity Model ® Integration
(CMMI SM), Version 1.1, CMU/SEI-2002-TR-011, Software
Engineering Institute (SEI), 2002.

 [74] Coleman D., Booch G., Garlan D., Iyengar S., Kobryn C., and
Stavridou V., Is UML an Architectural Description Language?,
Panel at Conference on Object-Oriented Programming, Systems,
Languages, and applications (OOPSLA) 1999, URL:
http://www.acm.org/sigs/sigplan/oopsla/oopsla99/2_ap/tech/2d1a_u
ml.html, 2003.

 [75] Coleman D., Ash D., Lowther B., and Oman P., “Using Metrics to
Evaluate Software System Maintainability”, In IEEE Computer,
volume 27, issue 8, pp. 44-49, 1994.

 [76] Collins H. M. and Pinch T., The Golem : What You Should Know
about Science (2nd edition), ISBN 0521645506, Cambridge
University Press, 1998.

 [77] Conway M. E., “How do committees invent?”, In Datamation,
volume 14, issue 4, pp. 28-31, 1968.

 [78] Cormen T. H., Leiserson C. E., and Rivest R. L., Introduction to
Algorithms, ISBN 0-262-53091-0, MIT Press, 1990.

 [79] Correia J. M., Biscotti F., and Dharmasthira Y., Forecast: AIM and
Portal Software, Worldwide, 2005-2010, Gartner, 2006.

78 References

 [80] Crnkovic Ivica and Larsson M., “Challenges of Component-based

Development”, In Journal of Systems & Software, volume 61, issue
3, pp. 201-212, 2002.

 [81] Crnkovic I., Asklund U., and Persson-Dahlqvist A., Implementing
and Integrating Product Data Management and Software
Configuration Management, ISBN 1-58053-498-8, Artech House,
2003.

 [82] Crnkovic I. and Chaudron M., “Component-based Development
Process and Component Lifecycle”, In Proceedings of 27th
International Conference Information Technology Interfaces (ITI),
IEEE, 2005.

 [83] Crnkovic I. and Larsson M., Building Reliable Component-Based
Software Systems, ISBN 1-58053-327-2, Artech House, 2002.

 [84] Cummins F. A., Enterprise Integration: An Architecture for
Enterprise Application and Systems Integration, ISBN 0471400106,
John Wiley & Sons, 2002.

 [85] Curtis B., Hefley B., and Miller S., People Capability Maturity
Model (P-CMM), CMU/SEI-2001-MM-001, Software Engineering
Insitute, 2005.

 [86] Dagdeviren H., Juric R., and Kassana T. A., “An Exploratory Study
for Effective COTS and OSS Product Marketing”, In Proceedings of
27th International Conference on Information Technology Interfaces
(ITI), pp. 681-686, IEEE, 2005.

 [87] Dashofy E. M. and van der Hoek A., “Representing Product Family
Architectures in an Extensible Architecture Description Language”,
In Proceedings of The International Workshop on Product Family
Engineering (PFE-4), Bilbao, Spain, 2001.

 [88] Davis H. C., Millard D. E., Reich S., Bouvin N., Grønbæk K.,
Nürnberg P. J., Sloth L., Wiil U. K., and Anderson K.,
“Interoperability between Hypermedia Systems: The Standardisation
Work of the OHSWG”, In Proceedings of Tenth ACM Conference
on Hypertext and Hypermedia: Returning to Our Diverse Roots, pp.
201-202, ACM, 1999.

 [89] Davis L., Flagg D., Gamble R. F., and Karatas C., “Classifying
Interoperability Conflicts”, In Proceedings of Second International
Conference on COTS-Based Software Systems , pp. 62-71, LNCS
2580, Springer Verlag, 2003.

 79

 [90] Davis L., Gamble R., Payton J., Jónsdóttir G., and Underwood D.,

“A Notation for Problematic Architecture Interactions”, In ACM
SIGSOFT Software Engineering Notes, volume 26, issue 5, 2001.

 [91] Davis L. A. and Gamble R. F., “Identifying Evolvability for
Integration”, In Proceedings of First International Conference on
COTS-Based Software Systems (ICCBSS), pp. 65-75, Springer,
2002.

 [92] Decker S., Melnik S., van Harmelen F., Fensel D., Klein M.,
Broekstra J., Erdmann M., and Horrocks I., “The Semantic Web:
The Roles of XML and RDF”, In IEEE Internet Computing, volume
4, issue 5, pp. 63-74, 2000.

 [93] DeLine R., “Avoiding Packaging Mismatch with Flexible
Packaging”, In IEEE Transactions on Software Engineering, volume
27, issue 2, pp. 124-143, 20010.

 [94] DeMarco T. and Lister T., Peopleware : Productive Projects and
Teams (2nd edition), ISBN 0-932633-43-9, Dorset House
Publishing, 1999.

 [95] Denning P. J. and Dargan P. A., “A discipline of software
architecture”, In ACM Interactions, volume 1, issue 1, 1994.

 [96] Denzin N. K., The Research Act: A Theoretical Introduction to
Sociological Methods (3rd edition), Prentice-Hall, 1989.

 [97] DePrince W. and Hofmeister C., “Analyzing Commercial
Component Models”, In Proceedings of Third Working IEEE/IFIP
Conference on Software Architecture (WICSA3), pp. 205-219,
Kluwer Academic Publishers, 2002.

 [98] Di Marco A. and Mirandola R., “Model Transformation in Software
Performance Engineering”, In Proceedings of 2nd International
Conference on the Quality of Software Architectures (QoSA),
Springer, 2006.

 [99] Dijkstra E. W., “The Structure of the THE Multiprogramming
System”, In Communications of the ACM, volume 11, issue 5, pp.
341-346, 1968.

 [100] Dikel D. M., Kane D., and Wilson J. R., Software Architecture -
Organizational Principles and Patterns, Software Architecture
Series, ISBN 0-13-029032-7, Prentice Hall PTR, 2001.

80 References

 [101] Duzbayev N. and Poernomo I., “Runtime prediction of queued

behaviour”, In Proceedings of 2nd International Conference on the
Quality of Software Architectures (QoSA), Springer, 2006.

 [102] Egyed A., Medividovic N., and Gacek C., “Component-based
perspective on software mismatch detection and resolution”, In IEE
Proceedings - Software, volume 147, issue 6, 2000.

 [103] EIA, Systems Engineering Capability Model, EIA Standard 731.1,
Electronic Industries Alliance, 2002.

 [104] Emmerich W., Ellmer E., and Fieglein H., “TIGRA - An
Architectural Style for Enterprise Application Integration”, In
Proceedings of 23rd International Conference on Software
Engineering, pp. 567-576, IEEE, 2001.

 [105] Estublier J. and Favre J.-M., “Component Models and Technology”,
in Crnkovic I. and Larsson M. (editors): Building Reliable
Component-Based Software Systems, ISBN 1-58053-327-2, Artech
House, 2002.

 [106] Fayad M. E., Hamu D. S., and Brugali D., “Enterprise frameworks
characteristics, criteria, and challenges”, In Communications of the
ACM, volume 43, issue 10, pp. 39-46, 2000.

 [107] Fayad M. E. and Schmidt D. C., “Object-oriented application
frameworks”, In Communications of the ACM, volume 40, issue 10,
pp. 32-38, 1997.

 [108] Ferneley E. H., “Design Metrics as an Aid to Software Maintenance:
An Empirical Study”, In Journal of Software Maintenance:
Research and Practice, volume 11, issue 1, pp. 55-72, 1999.

 [109] Fowler M., Refactoring: Improving the Design of Existing Code,
ISBN 0201485672, Addison-Wesley, 1998.

 [110] Fowler M., Patterns of Enterprise Application Architecture, ISBN
0321127420, Addison-Wesley, 2002.

 [111] Fowler M., “Who Needs an Architect?”, In IEEE Software, volume
20, issue 5, pp. 11-13, 2003.

 [112] Gacek C., Detecting Architectural Mismatches During Systems
Composition, USC/CSE-97-TR-506, University of Southern
California, 1997.

 [113] Gamma E., Helm R., Johnson R., and Vlissidies J., Design Patterns
- Elements of Reusable Object-Oriented Software, ISBN 0-201-
63361-2, Addison-Wesley, 1995.

 81

 [114] Garlan D., Allen R., and Ockerbloom J., “Exploiting Style in

Architectural Design Environments”, In Proceedings of SIGSOFT
'94 Symposium on the Foundations of Software Engineerng, 1994.

 [115] Garlan D., Allen R., and Ockerbloom J., “Architectural Mismatch:
Why Reuse is so Hard”, In IEEE Software, volume 12, issue 6, pp.
17-26, 1995.

 [116] Garlan D., Monroe R. T., and Wile D., “Acme: Architectural
Description of Component-Based Systems”, in Leavens G.T. and
Sitarman M. (editors): Foundations of Component-Based Systems,
Cambridge University Press, 2000.

 [117] Garlan D. and Shaw M., “An Introduction to Software
Architecture”, In Advances in Software Engineering and Knowledge
Engineering, volume I, 1993.

 [118] GEIA, Processes for Engineering a System, EIA-632, Government
Electronics and Information Technology Association, 1999.

 [119] Ghezzi C., Jazayeri M., and Mandrioli D., Fundamentals of Software
Engineering, ISBN 0-13-305699-6, Prentice Hall, Pearson
Education, 2003.

 [120] Gilb T., Principles of Software Engineering Management, ISBN 0-
201-19246-2, Addison-Wesley, 1988.

 [121] Google, Google, URL: http://www.google.com/, 2006.
 [122] Gorton I., Thurman D., and Thomson J., “Next Generation

Application Integration Challenges and New Approaches”, In
Proceedings of 27th Annual International Computer Software and
Applications Conference (COMPSAC), pp. 585-590, IEEE, 2003.

 [123] Grady J. O., Systems Integration, CRC Press, 1994.
 [124] Grady R. B., “Successfully Applying Software Metrics”, In IEEE

Computer, volume 27, issue 9, pp. 18-25, 1994.
 [125] Gremba J. and Myers C., The IDEAL Model: A Practical Guide for

Improvement, Bridge, issue three, Software Engineering Institute
(SEI), 1997.

 [126] Griss M. L., Favaro J., and Walton P., “Managerial and
organizational issues - starting and running a software reuse
program”, in Schäfer W., Prieto-díaz R., and Matsumoto M.
(editors): Software Reusability, ISBN 0-13-063918-4, Ellis
Horwood, 1994.

82 References

 [127] Gröne B., Knöpfel A., and Kugel R., “Architecture recovery of

Apache 1.3 - A case study”, In Proceedings of International
Conference on Software Engineering Research and Practice,
CSREA Press, 2002.

 [128] Guarino N., Formal Ontology in Information Systems, ISBN
9051993994, IOS Press, 1998.

 [129] Gyllenswärd E., Kap M., and Land R., “Information Organizer - A
Comprehensive View on Reuse”, In Proceedings of 4th
International Conference on Enterprise Information Systems
(ICEIS), 2002.

 [130] Halsall F., Data Communications, Computer Networks, and Open
Systems (4th edition), ISBN 020142293X, Addison-Wesley, 1996.

 [131] Halstead M. H., Elements of Software Science, Operating, and
Programming Systems Series, Elsevier, 1977.

 [132] Hamlet D. and Maybee J., The Engineering of Software, ISBN 0-
201-70103-0, Addison Wesley Longman, 2001.

 [133] Harold E. R. and Means W. S., XML in a Nutshell (2nd edition),
ISBN 0596002920, O'Reilly, 2004.

 [134] Hasselbring W., “Information System Integration”, In
Communications of the ACM, volume 43, issue 6, pp. 33-38, 2000.

 [135] Hasso Plattner Institute (HPI), Apache Modeling Portal, URL:
http://apache.hpi.uni-potsdam.de/, 2003.

 [136] Hasso Plattner Institute (HPI), Fundamental Modeling Concepts
(FMC) Web Site, URL: http://fmc.hpi.uni-potsdam.de/, 2003.

 [137] Heiler S., “Semantic Interoperability”, In ACM Computing Surveys,
volume 27, issue 2, pp. 271-273, 1995.

 [138] Heineman G. T. and Councill W. T., Component-based Software
Engineering, Putting the Pieces Together, ISBN 0-201-70485-4,
Addison-Wesley, 2001.

 [139] Heinisch C. and Goll J., “Consistent Object-Oriented Modeling of
System Dynamics with State-Based Collaboration Diagrams”, In
Proceedings of International Conference on Software Engineering
Research and Practice, CSREA Press, 2003.

 [140] Henry S. and Kafura D., “Software Structure Metrics Based on
Information Flow”, In IEEE Transactions on Software Engineering,
volume SE7, issue 5, pp. 510-519, 1981.

 83

 [141] Herbsleb J. D. and Moitra D., “Global Software Development”, In

IEEE Software, volume 18, issue 2, pp. 16-20, 2001.
 [142] Hermansson H., Johansson M., and Lundberg L., “A Distributed

Component Architecture for a Large Telecommunication
Application”, In Proceedings of the Seventh Asia-Pacific Software
Engineering Conference, pp. 188-195, 2000.

 [143] Hissam S. A., Moreno G. A., Stafford J., and Wallnau K. C.,
Packaging Predictable Assembly with Prediction-Enabled
Component Technology, Technical report CMU/SEI-2001-TR-024
ESC-TR-2001-024, 2001.

 [144] Hissam S. A., Hudak J., Ivers J., Klein M., Larsson M., Moreno G.
A., Northrop L., Plakosh D., Stafford J., Wallnau K. C., and Wood
W., Predictable Assembly of Substation Automation Systems: An
Experience Report, CMU/SEI-2002-TR-031, Software Engineering
Institute, Carnegie Mellon University, 2002.

 [145] Hissam S. A., Hudak J., Ivers J., Klein M., Larsson M., Moreno G.
A., Northrop L., Plakosh D., Stafford J., Wallnau K. C., and Wood
W., Predictable Assembly of Substation Automation Systems: An
Experience Report, Second Edition, CMU/SEI-2002-TR-031,
Software Engineering Institute, Carnegie Mellon University, 2003.

 [146] Hissam S. A., Moreno G. A., Stafford J., and Wallnau K. C.,
“Enabling Predictable Assembly”, In Journal of Systems &
Software, volume 65, issue 3, pp. 185-198, 2003.

 [147] Hissam S. A., Stafford J., and Wallnau K. C., Volume III: Anatomy
of a Reasoning-Enabled Component Technology, CMU/SEI-2001-
TR-007, Software Engineering Institute, Carnegie Mellon
University, 2001.

 [148] Hofmeister C. and Nord R., “From software architecture to
implementation with UML”, pp. 113-114, IEEE, 2001.

 [149] Hofmeister C., Nord R., and Soni D., Applied Software Architecture,
ISBN 0-201-32571-3, Addison-Wesley, 2000.

 [150] Hofstede G., Cultures and Organizations: Software of the Mind (2nd
edition), ISBN 0071439595, McGraw-Hill, 2004.

 [151] Hohmann L., Beyond Software Architecture, The Addison-Wesley
Signature Series, ISBN 0-201-77594-8, Addison-Wesley, 2003.

84 References

 [152] Hunter J., “Enhancing the Semantic Interoperability of Multimedia

Through a Core Ontology”, In IEEE Transactions on Circuits &
Systems for Video Technology, volume 13, issue 1, pp. 49-59, 2003.

 [153] IASA, International Association of Software Architects, URL:
http://www.iasahome.org, 2006.

 [154] IEEE, IEEE Standard Glossary of Software Engineering
Terminology, IEEE Std 610.12-1990, IEEE, 1990.

 [155] IEEE, Special Issue on Software Architecture, IEEE Transactions
on Software Engineering, volume 21, issue 4, 1995.

 [156] IEEE, IEEE Standard for Software Maintenance, IEEE Std 1219-
1998, 1998.

 [157] IEEE, IEEE, IEEE Standards Association Home Page,
http://standards.ieee.org/, 2004.

 [158] IEEE, IEEE Xplore, URL: http://ieeexplore.ieee.org/, 2006.
 [159] IEEE Architecture Working Group, IEEE Recommended Practice

for Architectural Description of Software-Intensive Systems, IEEE
Std 1471-2000, IEEE, 2000.

 [160] ISO, ISO, ISO - International Organization for Standardization,
http://www.iso.org, 2004.

 [161] ISO/IEC, Information Technology - Software Life-Cycle Processes,
ISO/IEC 12207:1995 (E), ISO/IEC, 1995.

 [162] ISO/IEC, Systems Engineering - System life cycle processes,
ISO/IEC 15288:2002(E), ISO/IEC, 2002.

 [163] Jacobson I., Object-Oriented Software Engineering: A Use Case
Driven Approach, ISBN 0201544350, Addison-Wesley, 1992.

 [164] Jakobsson L., Christiansson B., and Crnkovic I., “Component-Based
Development Process”, in Crnkovic I. and Larsson M. (editors):
Building Reliable Component-Based Software Systems, ISBN 1-
58053-327-2, Artech House, 2002.

 [165] Jaktman C. B., Leaney J., and Liu M., “Structural Analysis of the
Software Architecture - A Maintenance Assessment Case Study”, In
Proceedings of The First Working IFIP Conference on Software
Architecture (WICSA1), Kluwer Academic Publishers, 1999.

 [166] Jansen A. and Bosch J., “Software Architecture as a Set of
Architectural Design Decisions”, In Proceedings of 5th Working

 85

IEEE/IFIP Conference on Software Architecture, pp. 109-118,
IEEE, 2005.

 [167] Johansson E. and Höst M., “Tracking Degradation in Software
Product Lines through Measurement of Design Rule Violations”, In
Proceedings of 14th International Conference in Software
Engineering and Knowledge Engineering (SEKE), ACM, 2002.

 [168] John I., Muthig D., Sody P., and Tolzmann E., “Efficient and
systematic software evolution through domain analysis”, In
Requirements Engineering, 2002.Proceedings.IEEE Joint
International Conference on, pp. 237-244, 2002.

 [169] Johnson P., Enterprise Software System Integration - An
Architectural Perspective, Ph.D. Thesis, Industrial Information and
Control Systems, Royal Institute of Technology, 2002.

 [170] Johnson R. E., “Frameworks = (Components + Patterns)”, In
Communications of the ACM, volume 40, issue 10, pp. 39-42, 1997.

 [171] Kajko-Mattson M., “Preventive Maintenance! Do we know what it
is?”, In Proceedings of International Conference on Software
Maintenance (ICSM), IEEE, 2000.

 [172] Kajko-Mattson M., “Problems within Support (Upfront
Maintenance)”, In Proceedings of Seventh European Conference on
Software Maintenance and Reengineering, IEEE, 2003.

 [173] Kajko-Mattsson M., Corrective Maintenance Maturity Model:
Problem Management, Department of Computer and Systems
Sciences, Stockholm University and Royal Institute of Technology,
2001.

 [174] Kajko-Mattsson M., “Motivating the Corrective Maintenance
Maturity Model”, In Proceedings of Seventh IEEE International
Conference on Engineering of Complex Computer Systems, IEEE,
2001.

 [175] Kaplan A., Ridgway J., and Wileden J. C., “Why IDLs are Not
Ideal”, In Proceedings of 9th International Workshop on Software
Specification and Design, ACM, 1998.

 [176] Karlsson E.-A., Software Reuse : A Holistic Approach, Wiley Series
in Software Based Systems, ISBN 0 471 95819 0, John Wiley &
Sons Ltd., 1995.

 [177] Karlsson L. and Regnell B., “Introducing Tool Support for
Retrospective Analysis of Release Planning Decisions”, In

86 References

Proceedings of 7th International Conference on Product Focused
Software Process Improvement (PROFES), pp. 19-33, Springer,
2006.

 [178] Karolak D. W., Global Software Development - Managing Virtual
Teams and Environments, ISBN 0-8186-8701-0, IEEE Computer
Society, 1998.

 [179] Kazman R., “Tool support for architecture analysis and design”, In
Proceedings of the second international software architecture
workshop (ISAW-2) and international workshop on multiple
perspectives in software development (Viewpoints '96) on SIGSOFT
'96 workshops (jointly), pp. 94-97, 1996.

 [180] Kazman R., Abowd G., Bass L., and Clements P., “Scenario-Based
Analysis of Software Architecture”, In IEEE Software, volume 13,
issue 6, pp. 47-55, 1996.

 [181] Kazman R., Barbacci M., Klein M., and Carriere J., “Experience
with Performing Architecture Tradeoff Analysis Method”, In
Proceedings of The International Conference on Software
Engineering, New York, pp. 54-63, 1999.

 [182] Kazman R., Bass L., Abowd G., and Webb M., “SAAM: A Method
for Analyzing the Properties of Software Architectures”, In
Proceedings of The 16th International Conference on Software
Engineering, 1994.

 [183] Kazman R., Klein M., Barbacci M., Longstaff T., Lipson H., and
Carriere J., “The Architecture Tradeoff Analysis Method”, In
Proceedings of The Fourth IEEE International Conference on
Engineering of Complex Computer Systems (ICECCS), pp. 68-78,
IEEE, 1998.

 [184] Keller F., Tabeling P., Apfelbacher R., Gröne B., Knöpfel A., Kugel
R., and Schmidt O., “Improving Knowledge Transfer at the
Architectural Level: Concepts and Notations”, In Proceedings of
International Conference on Software Engineering Research and
Practice, CSREA Press, 2002.

 [185] Keller F. and Wendt S., “FMC: An Approach Towards Architecture-
Centric System Development”, In Proceedings of 10th IEEE
Symposium and Workshops on Engineering of Computer Based
Systems, IEEE, 2003.

 87

 [186] Keshav R. and Gamble R., “Towards a Taxonomy of Architecture

Integration Strategies”, In Proceedings of third International
Workshop on Software Architecture, pp. 89-92, ACM, 1998.

 [187] Kim D.-H. and Kim M.-S., “Web GIS Service Component Based On
Open Environment”, In Proceedings of IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), pp. 3346-
3348, IEEE, 2002.

 [188] Kindrick J. D., Sauter J. A., and Matthews R. S., “Improving
conformance and interoperability testing”, In StandardView, volume
4, issue 1, 1996.

 [189] Kircher M. and Prashant J., Pattern-Oriented Software Architecture,
Volume 3: Patterns for Resource Management , ISBN 0-470-84525-
2, Wiley, 2004.

 [190] Kitchenham B., Procedures for Performing Systematic Reviews,
TR/SE0401, Keele University, 2004.

 [191] Kitchenham B. A., Travassos G. H., von Mayrhauser A., Niessink
F., Schneidewind N. F., Singer J., Takada S., Vehvilainen R., and
Yang H., “Towards and Ontology of Software Maintenance”, In
Journal of Software Maintenance: Research and Practice, volume
11, issue 6, pp. 365-389, 1999.

 [192] Kitchenham B., Pickard L., and Pfleeger S. L., “Case Studies for
Method and Tool Evaluation”, In IEEE Software, volume 12, issue
4, pp. 52-62, 1995.

 [193] Klein J., “How Does the Architect's Role Change as the Software
Ages?”, In Proceedings of 5th Working IEEE/IFIP Conference on
Software Architecture (WICSA), IEEE, 2005.

 [194] Kobryn C., “Modeling enterprise software architectures using
UML”, In Proceedings of Second International Enterprise
Distributed Object Computing Workshop, pp. 25-34, 1998.

 [195] Korhonen M. and Mikkonen T., “Assessing Systems Adaptability to
a Product Family”, In Proceedings of International Conference on
Software Engineering Research and Practice, CSREA Press, 2003.

 [196] Kotonya G. and Sommerville I., Requirements Engineering:
Processes and Techniques, ISBN 0471972088, John Wiley & Sons,
1998.

 [197] Kramer R. and Sesink L., “Framework for Photographic Archives
Interoperability”, In Proceedings of The 3rd Conference on

88 References

Standardization and Innovation in Information Technology, pp. 135-
140, IEEE, 2003.

 [198] Kruchten P., Selic B., and Kozaczynski W., “Tutorial: describing
software architecture with UML”, pp. 693-694, ACM, 2002.

 [199] Kruchten P., “The 4+1 View Model of Architecture”, In IEEE
Software, volume 12, issue 6, pp. 42-50, 1995.

 [200] Kruchten P., The Rational Unified Process: An Introduction (2nd
edition), ISBN 0-201-70710-1, Addison-Wesley, 2000.

 [201] Kruchten P., Lago P., and van Vliet H., “Building up and Reasoning
about Architectural Knowledge”, In Proceedings of 2nd
International Conference on the Quality of Software Architectures
(QoSA), Springer, 2006.

 [202] Kuhn T. S., The Structure of Scientific Revolutions (3rd edition),
ISBN 0-226-45808-3, The University of Chicago Press, 1996.

 [203] Laitinen K., “Estimating Understandability of Software
Documents”, In ACM SIGSOFT Software Engineering Notes ,
volume 21, issue 4, pp. 81-92, 1996.

 [204] Land R., Architectural Solutions in PAM, M.Sc. Thesis, Department
of Computer Engineering, Mälardalen University, 2001.

 [205] Land R., “Software Deterioration And Maintainability – A Model
Proposal”, In Proceedings of Second Conference on Software
Engineering Research and Practise in Sweden (SERPS), pp. X-Y,
Blekinge Institute of Technology Research Report 2002:10, 2002.

 [206] Land R., An Architectural Approach to Software Evolution and
Integration, Licentiate Thesis, Department of Computer Science and
Engineering, Mälardalen University, 2003.

 [207] Land R., “Applying the IEEE 1471-2000 Recommended Practice to
a Software Integration Project”, In Proceedings of International
Conference on Software Engineering Research and Practice
(SERP'03), CSREA Press, 2003.

 [208] Land R., Interviews on Software Systems Merge, MRTC report ISSN
1404-3041 ISRN MDH-MRTC-196/2006-1-SE, Mälardalen Real-
Time Research Centre, Mälardalen University, 2006.

 [209] Land R., Blankers L., Larsson S., and Crnkovic I., “Software
Systems In-House Integration Strategies: Merge or Retire -
Experiences from Industry”, In Proceedings of Software
Engineering Research and Practice in Sweden (SERPS), 2005.

 89

 [210] Land R., Carlson J., Crnkovic I., and Larsson S., “A Method for

Exploring Software Systems Merge Alternatives”, In Proceedings of
submitted to Quality of Software Architectures (QoSA) (will
otherwise be published as a technical report, the paper can be found
at www.idt.mdh.se/~rld/temp/MergeMethod.pdf), 2006.

 [211] Land R. and Crnkovic I., “Software Systems Integration and
Architectural Analysis - A Case Study”, In Proceedings of
International Conference on Software Maintenance (ICSM), IEEE,
2003.

 [212] Land R. and Crnkovic I., “Existing Approaches to Software
Integration – and a Challenge for the Future”, In Proceedings of
Software Engineering Research and Practice in Sweden (SERPS),
Linköping University, 2004.

 [213] Land R. and Crnkovic I., “Software Systems In-House Integration:
Architecture, Process Practices and Strategy Selection”, In
Information & Software Technology, volume Accepted for
publication, 2006.

 [214] Land R., Crnkovic I., and Larsson S., “Concretizing the Vision of a
Future Integrated System – Experiences from Industry”, In
Proceedings of 27th International Conference Information
Technology Interfaces (ITI), IEEE, 2005.

 [215] Land R., Crnkovic I., Larsson S., and Blankers L., “Architectural
Concerns When Selecting an In-House Integration Strategy -
Experiences from Industry”, In Proceedings of 5th IEEE/IFIP
Working Conference on Software Architecture (WICSA), IEEE,
2005.

 [216] Land R., Crnkovic I., Larsson S., and Blankers L., “Architectural
Reuse in Software Systems In-house Integration and Merge -
Experiences from Industry”, In Proceedings of First International
Conference on the Quality of Software Architectures (QoSA),
Springer, 2005.

 [217] Land R., Crnkovic I., and Wallin C., “Integration of Software
Systems - Process Challenges”, In Proceedings of Euromicro
Conference, 2003.

 [218] Land R. and Lakotic M., “A Tool for Exploring Software Systems
Merge Alternatives”, In Proceedings of International ERCIM
Workshop on Software Evolution , 2006.

90 References

 [219] Land R., Larsson S., and Crnkovic I., Interviews on Software

Integration, MRTC report ISSN 1404-3041 ISRN MDH-MRTC-
177/2005-1-SE, Mälardalen Real-Time Research Centre, Mälardalen
University, 2005.

 [220] Land R., Larsson S., and Crnkovic I., “Processes Patterns for
Software Systems In-house Integration and Merge - Experiences
from Industry”, In Proceedings of 31st Euromicro Conference on
Software Engineering and Advanced Applications (SEAA), Software
Process and Product Improvement track (SPPI), 2005.

 [221] Land R., Thilenius P., Larsson S., and Crnkovic I., A Quantitative
Survey on Software In-house Integration, MRTC report ISSN 1404-
3041 ISRN MDH-MRTC-203/2006-1-SE, Mälardalen Real-Time
Research Centre, Mälardalen University, 2006.

 [222] Land R., Thilenius P., Larsson S., and Crnkovic I., “Software In-
House Integration – Quantified Experiences from Industry”, In
Proceedings of 32nd Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), Software Process
and Product Improvement track (SPPI), IEEE, 2006.

 [223] Lange R. and Schwanke R. W., “Software Architecture Analysis: A
Case Study”, In Proceedings of 3rd international workshop on
Software configuration management, ACM, 1991.

 [224] Lanning D. L. and Khoshgoftaar T. M., “Modeling the Relationship
Between Source Code Complexity and Maintenance Difficulty”, In
IEEE Computer, volume 27, issue 9, pp. 35-40, 1994.

 [225] Larsson M., Applying Configuration Management Techniques to
Component-Based Systems, Licentiate Thesis, Dissertation 2000-
007, Department of Information Technology Uppsala University.,
2000.

 [226] Larsson M., Predicting Quality Attributes in Component-based
Software Systems, Ph.D. Thesis, Mälardalen University, 2004.

 [227] Larsson M. and Crnkovic I., “New Challenges for Configuration
Management”, In Proceedings of 9th Symposium on System
Configuration Management, Lecture Notes in Computer Science, nr
1675, Springer Verlag, 1999.

 [228] Larsson S., Improving Software Product Integration, Technology
Licentiate Thesis, Department of Computer Science and Electronics,
Mälardalen University, 2005.

 91

 [229] Laudon K. C. and Laudon J. P., Management Information Systems

(8th edition), ISBN 0131014986, Pearson Education, 20030.
 [230] Le H. and Howlett C., “Client-Server Communication Standards for

Mathematical Computation”, In Proceedings of International
Conference on Symbolic and Algebraic Computation, pp. 299-306,
ACM Press, 1999.

 [231] Leclercq E., Benslimane D., and Yétongnon K., “ISIS: A Semantic
Mediation Model and an Agent Based Architecture for GIS
Interoperability”, In Proceedings of International Symposium
Database Engineering and Applications (IDEAS), pp. 87-91, IEEE,
1999.

 [232] Lee J., “Design rationale systems: understanding the issues”, In
IEEE Expert, volume 12, issue 3, pp. 78-85, 1997.

 [233] Lee J., Siau K., and Hong S., “Enterprise Integration with ERP and
EAI”, In Communications of the ACM, volume 46, issue 2, pp. 54-
60, 2003.

 [234] Lehman M. M., Perry D. E., and Ramil J. F., “Implications of
evolution metrics on software maintenance”, In Proceedings of
International Conference on Software Maintenance, pp. 208-217,
IEEE, 1998.

 [235] Lehman M. M. and Ramil J. F., FEAST project, URL:
http://www.doc.ic.ac.uk/~mml/feast/, 2001.

 [236] Lehman M. M. and Ramil J. F., “Rules and Tools for Software
Evolution Planning and Management”, In Annals of Software
Engineering, volume 11, issue 1, pp. 15-44, 2001.

 [237] Lehman M. M. and Ramil J. F., “Software Evolution and Software
Evolution Processes”, In Annals of Software Engineering, volume
14, issue 1-4, pp. 275-309, 2002.

 [238] Li M., Puder A., and Schieferdecker I., “A Test Framework for
CORBA Interoperability”, In Proceedings of Fifth IEEE
International Enterprise Distributed Object Computing Conference,
pp. 152-161, IEEE, 2001.

 [239] Libicki M., “Second-Best Practices for Interoperability”, In
StandardView, volume 4, issue 1, pp. 32-35, 1996.

 [240] Lientz B. P. and Swanson E. B., Software Maintenance
Management, Addison-Wesley, 1980.

92 References

 [241] Linthicum D. S., Enterprise Application Integration, Addison-

Wesley Information Technology Series, ISBN 0201615835,
Addison-Wesley, 1999.

 [242] Linthicum D. S., B2B Application Integration: e-Business-Enable
Your Enterprise, ISBN 0201709368, Addison-Wesley, 2003.

 [243] Longley P. A., Goodchild M. F., Maguire D. J., and Rhind D. W.,
Geographic Information Systems and Science, ISBN 0471892750,
John Wiley & Sons, 2001.

 [244] Losavio F., Ortega D., and Perez M., “Modeling EAI”, In
Proceedings of 12th International Conference of the Chilean
Computer Science Society, pp. 195-203, IEEE, 2002.

 [245] Luckham D. C., Kenney J. J., Augustin L. M., Vera J., Bryan D.,
and Mann W., “Specification and Analysis of System Architecture
Using Rapide”, In IEEE Transactions on Software Engineering,
issue Special Issue on Software Architecture, pp. 336-335, 1995.

 [246] Lung C.-H., “Software architecture recovery and restructuring
through clustering techniques”, In Proceedings of Third
International Workshop on Software Architecture (ISAW), pp. 101-
104, ACM Press, 1998.

 [247] Lung C.-H., Bot S., Kalaichelvan K., and Kazman R., “An Approach
to Software Architecture Analysis for Evolution and Reusability”, In
Proceedings of Centre for Advanced Studies Conference (CASCON),
pp. 144-154, 1997.

 [248] Lüders F., Use of Component-Based Software Architectures in
Industrial Control Systems, Technology Licentiate Thesis,
Mälardalen University, Sweden, 2003.

 [249] Lüders F., Lau K.-K., and Ho S.-M., “On the Specification of
Components”, in Crnkovic I. and Larsson M. (editors): Building
Reliable Component-Based Software Systems, ISBN 1-58053-327-2,
Artech House, 2002.

 [250] Maccari A. and Galal G. H., “Introducing the Software
Architectonic Viewpoint”, In Proceedings of Third Working
IEEE/IFIP Conference on Software Architecture (WICSA3), pp.
175-189, Kluwer Academic Publishers, 2002.

 [251] Maciaszek L. A. and Liong B. L., Practical Software Engineering,
ISBN 0 321 20465 4, Pearson Education Limited, 2005.

 93

 [252] Malveau R. and Mowbray T. J., Software Architect Bootcamp,

Software Architecture Series, ISBN 0-13-027407-0, Prentice Hall
PTR, 2001.

 [253] Mattson M., Bosch J., and Fayad M. E., “Framework Integration
Problems, Causes, Solutions”, In Communications of the ACM,
volume 42, issue 10, pp. 81-87, 1999.

 [254] Maxwell Joseph A., “Understanding and validity in qualitative
research”, In Harvard Educational Review, volume 62, issue 3, pp.
279-300, 1992.

 [255] Mazen M. and Dibuz S., “Pragmatic method for interoperability test
suite derivation”, In Proceedings of 24th Euromicro Conference, pp.
838-844, IEEE, 1998.

 [256] McCabe T. J., “A Complexity Measure”, In IEEE Transaction on
Software Engineering, volume 2, pp. 308-320, 1976.

 [257] McConnell S., Rapid Development, Taming Wild Software
Schedules, ISBN 1-55615-900-5, Microsoft Press, 1996.

 [258] Medvidovic N., “On the Role of Middleware in Architecture-Based
Software Development”, In Proceedings of the 14th international
conference on Software Engineering and Knowledge Engineering
(SEKE), pp. 299-306, ACM Press, 2002.

 [259] Medvidovic N., Rosenblum D. S., Redmiles D. F., and Robbins J.
E., “Modeling Software Architectures in the Unified Modeling
Language”, In ACM Transactions on Software Engineering and
Methodology, volume 11, issue 1, pp. 2-57, 2002.

 [260] Medvidovic N., Rosenblum D. S., and Taylor R. N., “An
Architecture-Based Approach to Software Evolution”, In
Proceedings of International Workshop on the Principles of
Software Evolution (IWPSE), IEEE, 1999.

 [261] Medvidovic N. and Taylor R. N., “A classification and comparison
framework for software architecture description languages”, In IEEE
Transactions on Software Engineering, volume 26, issue 1, pp. 70-
93, 2000.

 [262] Mehta A. and Heineman G. T., “Evolving legacy system features
into fine-grained components”, In Proceedings of 24th International
Conference on Software Engineering, pp. 417-427, 2002.

94 References

 [263] Mens T., “A state-of-the-art survey on software merging”, In IEEE

Transactions on Software Engineering, volume 28, issue 5, pp. 449-
462, 2002.

 [264] Mens T., Wermelinger M., Ducasse S., Demeyer S., Hirschfeld R.,
and Jazayeri M., “Challenges in Software Evolution”, In
Proceedings of Eigth International Workshop on Principles of
Software Evolution (IWPSE), IEEE, 2005.

 [265] Meyers C. and Oberndorf P., Managing Software Acquisition: Open
Systems and COTS Products, ISBN 0-201-70454-4, Addison-
Wesley, 2001.

 [266] Michell M., An Introduction to Genetic Algorithms (Complex
Adaptive Systems) (Reprint edition), ISBN 0262631857, MIT Press,
1998.

 [267] Millard D. E., Moreau L., Davis H. C., and Reich S., “FOHM: a
Fundamental Open Hypertext Model for Investigating
Interoperability between Hypertext Domains”, In Proceedings of
Eleventh ACM Conference on Hypertext and Hypermedia, pp. 93-
102, ACM, 2000.

 [268] Mitchell B., Traverso M., and Mancoridis S., “An architecture for
distributing the computation of software clustering algorithms”, In
Proceedings of Working IEEE/IFIP Conference on Software
Architecture (WICSA), pp. 181-190, 2001.

 [269] Monson-Haefel R., Enterprise JavaBeans (3rd edition), ISBN
0596002262, O'Reilly & Associates, 2001.

 [270] Moreno G. A., Hissam S. A., and Wallnau K. C., “Statistical Models
for Empirical Component Properties and Assembly-Level Property
Predictions: Toward Standard Labeling”, In Proceedings of 5th
Workshop on component based software engineering, 2002.

 [271] Muskens J., Bril R. J., and Chaudron M. R. V., “Generalizing
Consistency Checking between Software Views”, In Proceedings of
5th Working IEEE/IFIP Conference on Software Architecture
(WICSA), pp. 169-178, IEEE, 2005.

 [272] Mustapic G., Architecting Software for Complex Embedded Systems
- Quality Attribute Based Approach to Openness, Department of
Computer Science and Engineering, Mälardalen University, 2004.

 [273] Mustapic G., Wall A., Norström C., Crnkovic I., Sandström K.,
Fröberg J., and Andersson J., “Real World Influences on Software

 95

Architecture - Interviews with Industrial Software Experts”, In
Proceedings of Working IEEE/IFIP Conference on Software
Architecture (WICSA), pp. 101-111, IEEE, 2004.

 [274] Myers M. D., Qualitative Research in Information Systems, URL:
http://www.qual.auckland.ac.nz/, 2006.

 [275] Ncube C. and Maiden N. A., “Selecting the Right COTS Software:
Why Requirements Are Important”, in Heineman G.T. and Councill
W.T. (editors): Component-Based Software Engineering: Putting the
Pieces Together, ISBN 0-201-70485-4, Addison-Wesley, 2001.

 [276] Neale J. M. and Liebert R. M., Science and Behaviour - An
Introduction to Methods of Research (3rd edition), ISBN
0137951396, Prentice Hall International, Inc, 1985.

 [277] Nedstam J., Strategies for Management of Architectural Change and
Evolution, Ph.D. Thesis, Department of Communication Systems,
Faculty of Engineering, Lund University, 2005.

 [278] Newton H., Newton's Telecom Dictionary: Covering
Telecommunications, Networking, Information Technology,
Computing and the Internet (20th edition), ISBN 1578203090, CMP
Books, 2004.

 [279] Niazi M., Wilson D., and Zowghi D., “Implementing Software
Process Improvement Initiatives: An Empirical Study”, In
Proceedings of 7th International Conference on Product-Focused
Software Process Improvement (PROFES), pp. 222-233, Springer,
2006.

 [280] Nielsen J., Usability Engineering, ISBN 0-125-18406-9, Academic
Press, 1993.

 [281] Nordby E. and Blom M., “Semantic Integrity in CBD”, in Crnkovic
I. and Larsson M. (editors): Building Reliable Component-Based
Software Systems, ISBN 1-58053-327-2, Artech House, 2002.

 [282] O'Leary D. E., Enterprise Resource Planning Systems: Systems, Life
Cycle, Electronic Commerce, and Risk (1st edition), ISBN
0521791529, Cambridge University Press, 2000.

 [283] OGC, OGC, Open GIS Consortium, Inc., http://www.opengis.org/,
2004.

 [284] Olsson K. and Karlsson E.-A., Daily Build - The Best of Both
Worlds Rapid Development and Control, V040083, Sveriges
Verkstadsindustrier, 1999.

96 References

 [285] Oman P. and Hagemeister J., “Metrics for Assessing a Software

System's Maintainability”, In Proceedings of Conference on
Software Maintenance, pp. 337-344, IEEE, 1992.

 [286] Oman P., Hagemeister J., and Ash D., A Definition and Taxonomy
for Software Maintainability, SETL Report 91-08-TR, University of
Idaho, 1991.

 [287] Omelayenko B., “Integration of Product Ontologies for B2B
Marketplaces: A Preview”, In ACM SIGecom Exchanges , volume 2,
issue 1, pp. 19-25, 2000.

 [288] OMG, Object Management Group , URL: http://www.omg.org,
2003.

 [289] OMG, The Open Group Architectural Framework, URL:
http://www.opengroup.org/architecture/togaf8-doc/arch/, 2003.

 [290] OMG, UML 2.0 Standard Officially Adopted at OMG Technical
Meeting in Paris, URL:
http://www.omg.org/news/releases/pr2003/6-12-032.htm, 2003.

 [291] Open Group T., ADML Preface, URL:
http://www.opengroup.org/onlinepubs/009009899/, 2003.

 [292] Oreizy P., “Decentralized Software Evolution”, In Proceedings of
International Conference on the Principles of Software Evolution
(IWPSE 1), pp. 20-21, 1998.

 [293] Oreizy P., Medvidovic N., and Taylor R. N., “Architecture-based
runtime software evolution”, In Proceedings of International
Conference on Software Engineering, pp. 177-186, IEEE Computer
Society, 1998.

 [294] Paepcke A., Chang C.-C. K., Winograd T., and García-Molina H.,
“Interoperability for digital libraries worldwide”, In
Communications of the ACM, volume 41, issue 4, pp. 33-43, 1998.

 [295] Palsberg J., “Software Evolution and Integration”, In ACM
Computing Surveys, volume 28, issue 4es, 1996,
http://www.acm.org/pubs/citations/journals/surveys/1996-28-
4es/a200-palsberg/.

 [296] Parikh G., Handbook of Software Maintenance, ISBN 047-180930-
6, Wiley Interscience, 1986.

 [297] Parnas D. L., “On the Criteria To Be Used in Decomposing Systems
into Modules”, In Communications of the ACM , volume 15, issue
12, pp. 1053-1058, 1972.

 97

 [298] Parnas D. L., “On a 'buzzword': Hierarchical Structure”, In

Proceedings of IFIP Congress, pp. 336-339, 1974.
 [299] Parnas D. L., “Software Aging”, In Proceedings of The 16th

International Conference on Software Engineering, pp. 279-287,
IEEE Press, 1994.

 [300] Patton M. Q., Qualitative Research & Evaluation Methods (3rd
edition), ISBN 0-7619-1971-6, Sage Publications, 2002.

 [301] Paulish D., Architecture-Centric Software Project Management: A
Practical Guide, SEI Series in Software Engineering, ISBN 0-201-
73409-5, Addison-Wesley, 2002.

 [302] Perry D. E., “Laws and principles of evolution”, In Proceedings of
International Conference on Software Maintenance (ICSM), pp. 70-
70, IEEE, 2002.

 [303] Perry D. E. and Wolf A. L., “Foundations for the study of software
architecture”, In ACM SIGSOFT Software Engineering Notes,
volume 17, issue 4, pp. 40-52, 1992.

 [304] Perry D. E., Siy H. P., and Votta L. G., “Parallel Changes in Large-
Scale Software Development: An Observational Case Study”, In
ACM Transactions on Software Engineering and Methodology,
volume 10, issue 3, pp. 308-337, 2001.

 [305] Pigoski T. M., Practical Software Maintenance, ISBN 0471-17001-
1, John Wiley & Sons, 1997.

 [306] Pinto H. S. and Martins J. P., “A Methodology for Ontology
Integration”, In Proceedings of International Conference on
Knowledge Capture, pp. 131-138, ACM, 2001.

 [307] Pollock J. T., “The Big Issue: Interoperability vs. Integration”, In
eAI Journal, volume October, 2001, http://www.eaijournal.com/.

 [308] Popper K. R., The Logic of Scientific Discovery, ISBN 041507892X,
Routledge Press, 1959.

 [309] Pressman R. S., Software Engineering — A Practitioner's Approach,
McGraw-Hill International Ltd., 2000.

 [310] Ramage M. and Bennett K., “Maintaining maintainability”, In
Proceedings of International Comference on Software Maintenance
(ICSM), pp. 275-281, IEEE, 1998.

98 References

 [311] Ramil J. F. and Lehman M. M., “Metrics of Software Evolution as

Effort Predictors - A Case Study”, In Proceedings of International
Conference on Software Maintenance, pp. 163-172, IEEE, 2000.

 [312] Ramil J. F. and Lehman M. M., “Defining and applying metrics in
the context of continuing software evolution”, In Proceedings of
Seventh International Software Metrics Symposium (METRICS), pp.
199-209, IEEE, 2001.

 [313] Robson C., Real World Research (2nd edition), ISBN 0-631-21305-
8, Blackwell Publishers, 2002.

 [314] Roman E., Mastering Enterprise JavaBeans and the Java 2
Platform, Enterprise Edition, ISBN 0-471-33229-1, Wiley, 1999.

 [315] Royster C., “DoD Strategy on Open Systems and Interoperability”,
In StandardView, volume 4, issue 2, pp. 104-106, 1996.

 [316] Rozanski N. and Woods E., Software Systems Architecture :
Working With Stakeholders Using Viewpoints and Perspectives,
ISBN 0-321-11229-6, Addison-Wesley, 2005.

 [317] Ruh W. A., Maginnis F. X., and Brown W. J., Enterprise
Application Integration, A Wiley Tech Brief, ISBN 0471376418,
John Wiley & Sons, 2000.

 [318] Rumbaugh J., Blaha M., Premerlani W., Eddy F., and Lorensen W.,
Object-oriented Modeling and Design, ISBN 0136300545, Prentice
Hall, 1991.

 [319] Rumpe B., Schoenmakers M., Radermacher A., and Schurr A.,
“UML+ROOM as a standard ADL?”, In Proceedings of Fifth IEEE
International Conference on Engineering of Complex Computer
Systems (ICECCS'99), pp. 43-53, 1999.

 [320] Russell B., Our Knowledge of the External World, ISBN
0415096057, Routledge, 1993.

 [321] Rönkkö K., Making Methods Work in Software Engineering :
Method Deployment - as a Social Achievement, Ph.D. Thesis,
Blekinge Institute of Technology, 2005.

 [322] Sage A. P. and Lynch C. L., “Systems Integration and Architecting:
An Overview of Principles, Practices, and Perspectives”, In Systems
Engineering, volume 1, issue 3, pp. 176-227, 1998.

 [323] Sametinger J., Software Engineering with Reusable Components,
ISBN ISBN: 3-540-62695-6, Springer, 1997.

 99

 [324] SAP, www.sap.com, SAP R/3, www.sap.com, 2003.
 [325] Sarma A., Noroozi Z., and van der Hoek A., “Palantír: Raising

Awareness among Configuration Management Workspaces" , In
Proceedings of Twenty-Fifth International Conference on Software
Engineering, pp. 444-454, IEEE, 2003.

 [326] Sarma A. and van der Hoek A., “Visualizing Parallel Workspace
Activities”, In Proceedings of IASTED International Conference on
Software Engineering and Applications, pp. 435-440, IASTED,
2003.

 [327] Sartipi K. and Kontogiannis K., “A graph pattern matching approach
to software architecture recovery”, In Proceedings of International
Conference on Software Maintenance, pp. 408-419, IEEE, 2001.

 [328] Sauer L. D., Clay R. L., and Armstrong R., “Meta-component
architecture for software interoperability”, In Proceedings of
International Conference on Software Methods and Tools (SMT),
pp. 75-84, IEEE, 2000.

 [329] Schmidt D., Stal M., Rohnert H., and Buschmann F., Pattern-
Oriented Software Architecture - Patterns for Concurrent and
Networked Objects, Wiley Series in Software Design Patterns, ISBN
0-471-60695-2, John Wiley & Sons Ltd., 2000.

 [330] Schwanke R. W., “An intelligent tool for re-engineering software
modularity”, In Proceedings of 13th International Conference on
Software Engineering, pp. 83-92, ACM, 1991.

 [331] Schwanke R., “GEAR: A Good Enough Architectural Requirements
Process”, In Proceedings of 5th Working IEEE/IFIP Conference on
Software Architecture, pp. 57-66, IEEE, 2005.

 [332] Seaman C. B., “Qualitative Methods in Empirical Studies of
Software Engineering”, In IEEE Transactions on Software
Engineering, volume 25, issue 4, pp. 557-572, 1999.

 [333] SEI, Architecture Description Languages, URL:
http://www.sei.cmu.edu/architecture/adl.html, 2003.

 [334] SEI, The IDEAL Model, URL: http://www.sei.cmu.edu/ideal/, 2006.
 [335] SEI Software Technology Roadmap, Six Sigma, URL:

http://www.sei.cmu.edu/str/descriptions/sigma6_body.html, 2001.
 [336] SEI Software Technology Roadmap, Architecture Description

Languages, URL:
http://www.sei.cmu.edu/str/descriptions/adl_body.html, 2003.

100 References

 [337] SEI Software Technology Roadmap, Cyclomatic Complexity, URL:

http://www.sei.cmu.edu/str/descriptions/cyclomatic_body.html,
2003.

 [338] SEI Software Technology Roadmap, Halstead Complexity
Measures, URL:
http://www.sei.cmu.edu/str/descriptions/halstead_body.html, 2003.

 [339] SEI Software Technology Roadmap, Maintainability Index
Technique for Measuring Program Maintainability, URL:
http://www.sei.cmu.edu/str/descriptions/mitmpm.html, 2003.

 [340] SEI Software Technology Roadmap, Three Tier Software
Architectures, URL:
http://www.sei.cmu.edu/str/descriptions/threetier_body.html, 2003.

 [341] SEI Software Technology Roadmap, Two Tier Software
Architectures, URL:
http://www.sei.cmu.edu/str/descriptions/twotier_body.html, 2003.

 [342] SEI Software Technology Roadmap, COTS and Open Systems--An
Overview, URL: http://www.sei.cmu.edu/str/descriptions/cots.html,
9-6-2004.

 [343] SEI Software Technology Roadmap, Reference Models,
Architectures, Implementations--An Overview, URL:
http://www.sei.cmu.edu/str/descriptions/refmodels_body.html, 9-6-
2004.

 [344] Sewell M. T. and Sewell L. M., The Software Architect's Profession
- An Introduction, Software Architecture Series, ISBN 0-13-060796-
7, Prentice Hall PTR, 2002.

 [345] Shanzhen Y., Lizhu Z., Chunxiao X., Qilun L., and Yong Z.,
“Semantic and interoperable WebGIS”, In Proceedings of the
Second International Conference on Web Information Systems
Engineering, pp. 42-47, IEEE, 2001.

 [346] Shaw M., “Procedure calls are the assembly language of system
interconnection: Connectors deserve first-class status”, In
Proceedings of Workshop on Studies of Software Design, Lecture
Notes in Computer Science 1078, Springer-Verlag, 1996.

 [347] Shaw M., “The Coming-of-Age of Software Architecture Research”,
In Proceedings of 23rd International Conference on Software
Engineering (ICSE), pp. 657-664, ACM, 2001.

 101

 [348] Shaw M., “What Makes Good Research in Software Engineering?”,

In International Journal of Software Tools for Technology Transfer,
volume 4, issue 1, pp. 1-7, 2002.

 [349] Shaw M. and Clements P., “A Field Guide to Boxology: Preliminary
Classification of Architectural Styles for Software Systems”, In
Proceedings of The 21st Computer Software and Applications
Conference, 1994.

 [350] Shaw M. and Garlan D., Software Architecture: Perspectives on an
Emerging Discipline, ISBN 0-13-182957-2, Prentice-Hall, 1996.

 [351] Siegel J., CORBA 3 Fundamentals and Programming (2nd edition),
ISBN 0471295183, John Wiley & Sons, 2000.

 [352] Sommerville I., Software Engineering (7th edition), ISBN 0-321-
21026-3, Addison-Wesley, 2004.

 [353] Springer, Springer - Academic Journals, Books and Online Media,
URL: http://www.springer.com/, 2006.

 [354] Stafford J. and Wallnau K. C., “Component Composition and
Integration”, in Crnkovic I. and Larsson M. (editors): Building
Reliable Component-Based Software Systems, ISBN 1-58053-327-2,
Artech House, 2002.

 [355] Stanford University, Stanford Annotated Interoperability
Bibliography, URL: www-
diglib.stanford.edu/diglib/pub/interopbib.html, 8-4-2004.

 [356] Staples M. and Niazi M., “Experiences Using Systematic Review
Guidelines”, In Proceedings of 10th International Conference on
Evaluation and Assessment in Software Engineering (EASE), Keele
University, UK, 2006.

 [357] Stapleton J., DSDM - Dynamic Systems Development Method, ISBN
0-201-17889-3, Pearson Education, 1997.

 [358] Stonebraker M. and Hellerstein J. M., “Content Integration for E-
Business”, In ACM SIGMOD Record, volume 30, issue 2, pp. 552-
560, 2001.

 [359] Strauss A. and Corbin J. M., Basics of Qualitative Research:
Techniques and Procedures for Developing Grounded Theory (2nd
edition), ISBN 0803959400, Sage Publications, 1998.

 [360] Svahnberg M. and Bosch J., “Characterizing Evolution in Product
Line Architectures”, In Proceedings of 3rd annual IASTED

102 References

International Conference on Software Engineering and
Applications, pp. 92-97, IASTED/Acta Press, 1999.

 [361] Svahnberg M. and Bosch J., “Issues Concerning Variability in
Software Product Lines”, In Proceedings of Software Architectures
for Product Families: 7th International Workshop on Database
Programming Languages, DBPL'99, Revised Papers (Lecture Notes
in Computer Science 1951), Springer Verlag, 2000.

 [362] Szyperski C., Component Software - Beyond Object-Oriented
Programming, ISBN 0-201-17888-5, Addison-Wesley, 1998.

 [363] Taxén L., A Framework for the Coordination of Complex Systems'
Development, Ph.D. Thesis, Linköping University, Department of
Computer and Information Science, 2003.

 [364] Teng W., Pollack N., Serafino G., Chiu L., and Sweatman P., “GIS
and Data Interoperability at the NASA Goddard DAAC”, In
Proceedings of International Geoscience and Remote Sensing
Symposium (IGARSS), pp. 1953-1955, IEEE, 2001.

 [365] Thai T. and Lam H., .NET Framework Essentials (2nd edition),
O'Reilly Programming Series, ISBN 0596003021, O'Reilly &
Associates, 2002.

 [366] The Software Revolution, The Software Revolution, Inc., URL:
http://www.softwarerevolution.com/, 2006.

 [367] Tichy W., Lukowicz P., Prechelt L., and Heinz E. A., “Experimental
evaluation in computer science: A quantitative study”, In Journal of
Systems & Software, volume 28, issue 1, pp. 9-19, 1995.

 [368] Toussaint P. J., Integration of Information Systems : a Study in
Requirements Engineering, Ph.D. Thesis, Rijksuniversiteit Leiden,
1998.

 [369] Tu Q. and Godfrey M. W., “The build-time software architecture
view”, In Proceedings of International Conference on Software
Maintenance, pp. 398-407, IEEE, 2001.

 [370] Tu Q. and Godfrey M. W., “An integrated approach for studying
architectural evolution”, In Proceedings of 10th International
Workshop on Program Comprehension, pp. 127-136, 2002.

 [371] Tu S., Xu L., Abdelguerfi M., and Ratcliff J. J., “Applications:
Achieving Interoperability for Integration of Heterogeneous COTS
Geographic Information Systems”, In Proceedings of Tenth ACM

 103

International Symposium on Advances in Geographic Information
Systems, pp. 162-167, ACM, 2002.

 [372] Turing A., “On Computable Numbers, with an application to the
Entscheidungsproblem”, In Proc.Lond.Math.Soc., volume 2, issue
42, pp. 230-265, 1937.

 [373] UML, UML Home Page, URL: http://www.uml.org/, 2003.
 [374] Usabilitynet, Usabilitynet: usability resources for practitioners and

managers, URL: http://www.usabilitynet.org/home.htm, 2006.
 [375] van der Hoek A., Heimbigner D., and Wolf A. L., Versioned

Software Architecture, 1998.
 [376] van der Hoek A., Heimbigner D., and Wolf A. L., Capturing

Architectural Configurability: Variants, Options, and Evolution,
Technical Report CU-CS-895-99, 1999.

 [377] van der Hoek A., Mikic-Rakic M., Roshandel R., and Medvidovic
N., “Taming Architectural Evolution”, In Proceedings of The Sixth
European Software Engineering Conference (ESEC) and the Ninth
ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE-9), 2001.

 [378] van der Ven J. S., Jansen A., Avgeriou P., and Hammer D., “Using
Architectural Decisions”, In Proceedings of 2nd International
Conference on the Quality of Software Architectures (QoSA), 2006.

 [379] van der Westhuizen C. and van der Hoek A., “Understanding and
Propagating Architectural Change”, In Proceedings of Third
Working IEEE/IFIP Conference on Software Architecture 2002
(WICSA 3), pp. 95-109, Kluwer Academic Publishers, 2002.

 [380] van Deursen A., “The Software Evolution Paradox: An Aspect
Mining Perspective”, In Proceedings of International ERCIM
Workshop on Software Evolution, 2006.

 [381] van Gurp J. and Bosch J., “Design Erosion: Problems & Causes”, In
Journal of Systems & Software, volume 61, issue 2, pp. 105-119,
2002.

 [382] van Ommering R., “The Koala Component Model”, in Crnkovic I.
and Larsson M. (editors): Building Reliable Component-Based
Software Systems, ISBN 1-58053-327-2, Artech House, 2002.

 [383] van Ommering R., van der Linden F., and Kramer J., “The Koala
Component Model for Consumer Electronics Software”, In IEEE
Computer, volume 33, issue 3, pp. 78-85, 2000.

104 References

 [384] van Vliet H., Software Engineering : Principles and Practice, ISBN

0 471 93611 1, John Wiley & Sons, 1993.
 [385] Visser U., Stuckenschmidt H., Schuster G., and Vögele T.,

“Ontologies for Geographic Information Processing”, In Computers
& Geosciences, volume 28, issue 1, pp. 103-117, 2002.

 [386] Wall A., Software Architectures - An Overview, Department of
Computer Engineering, Mälardalen University, 1998.

 [387] Wallnau K. C., Hissam S. A., and Seacord R. C., Building Systems
from Commercial Components, ISBN 0-201-70064-6, Addison-
Wesley, 2001.

 [388] Wegner P., “Interoperability”, In ACM Computing Surveys, volume
28, issue 1, 1996.

 [389] Welker K. D. and Oman P., “Software Maintainability Metrics
Models in Practice”, In Crosstalk - the Journal of Defense Software
Engineering, issue Nov/Dec, 1995.

 [390] Whitehead E. J. Jr., “An architectural model for application
integration in open hypermedia environments”, In Proceedings of
Conference on Hypertext and Hypermedia, pp. 1-12, ACM Press,
1997.

 [391] Wiggerts T. A., “Using clustering algorithms in legacy systems
remodularization”, In Proceedings of Fourth Working Conference
on Reverse Engineering, pp. 33-43, IEEE, 1997.

 [392] Wikipedia, Wikipedia, the free encyclopedia, URL: wikipedia.org,
2006.

 [393] Wileden J. C. and Kaplan A., “Software Interoperability: Principles
and Practice”, In Proceedings of 21st International Conference on
Software Engineering, pp. 675-676, ACM, 1999.

 [394] Wileden J. C., Wolf A. L., Rosenblatt W. R., and Tarr P. L.,
“Specification Level Interoperability”, In Proceedings of 12th
International Conference on Software Engineering (ICSE), pp. 74-
85, ACM, 1990.

 [395] Wohlin C., Runeson P., Höst M., Ohlsson M. C., Regnell B., and
Wesslén A., Experimentation in Software Engineering: An
Introduction (The Kluwer International Series in Software
Engineering edition), ISBN 0792386825, Kluwer Academic
Publishers, 1999.

 105

 [396] Wooldridge M., Introduction to MultiAgent Systems, ISBN

047149691X, John Wiley & Sons, 2002.
 [397] Wu W. and Kelly T., “Managing Architectural Design Decisions for

Safety-Critical Software Systems”, In Proceedings of 2nd
International Conference on the Quality of Software Architectures
(QoSA), Springer, 2006.

 [398] WWISA, Worldwide Institute of Software Architects, URL:
http://www.wwisa.org, 2006.

 [399] XML, XML.org, URL: http://www.xml.org/, 2004.
 [400] Yakimovich D., Bieman J. M., and Basili V. R., “Software

Architecture Classification for Estimating the Cost of COTS
Integration”, In Proceedings of the 21st International Conference on
Software Engineering, pp. 296-302, ACM, 1999.

 [401] Yang J. and Papazoglou M. P., “Interoperation Support for
Electronic Business”, In Communications of the ACM , volume 43,
issue 6, pp. 39-47, 2000.

 [402] Yau S. S. and Dong N., “Integration in component-based software
development using design patterns”, In Proceedings of The 24th
Annual International Computer Software and Applications
Conference (COMPSAC), pp. 369-374, IEEE, 2000.

 [403] Yin R. K., Case Study Research : Design and Methods (3rd edition),
ISBN 0-7619-2553-8, Sage Publications, 2003.

 [404] Young P., Chaki N., Berzins V., and Luqi, “Evaluation of
Middleware Architectures in Achieving System Interoperability”, In
Proceedings of 14th IEEE International Workshop on Rapid Systems
Prototyping, pp. 108-116, IEEE, 2003.

 [405] Zachman J. A., “A Framework for Information Systems
Architecture”, In IBM Systems Journal, volume 26, issue 3, 1987.

 [406] Zelkowitz M. V. and Wallace D., “Experimental validation in
software engineering”, In Information and Software Technology,
volume 39, issue 11, pp. 735-743, 1997.

 [407] Zhang C., “Formal Semantic Specification for a Set of UML
Diagrams”, In Proceedings of International Conference on Software
Engineering Research and Practice, CSREA Press, 2003.

 [408] Zhuo F., Lowther B., Oman P., and Hagemeister J., “Constructing
and testing software maintainability assessment models”, In

106 References

Proceedings of First International Software Metrics Symposium, pp.
61-70, IEEE, 1993.

 [409] ZIFA, Zachman Framework for Enterprise Architecture, URL:
http://www.zifa.com/, 2003.

Paper I

Paper I

This paper is a reprint of:
“Software Systems Integration and Architectural Analysis – A Case Study”,
Rikard Land, Ivica Crnkovic, Proceedings of International Conference on
Software Maintenance (ICSM), Amsterdam, Netherlands, September 2003

The questionnaire form used to collect data from project participants, and the
collected data, can be found in Appendix A.

110 Paper I

Abstract
Software systems no longer evolve as separate entities but are also
integrated with each other. The purpose of integrating software systems can
be to increase user-value or to decrease maintenance costs. Different
approaches, one of which is software architectural analysis, can be used in
the process of integration planning and design.
This paper presents a case study in which three software systems were to be
integrated. We show how architectural reasoning was used to design and
compare integration alternatives. In particular, four different levels of the
integration were discussed (interoperation, a so-called Enterprise
Application Integration, an integration based on a common data model, and
a full integration). We also show how cost, time to delivery and
maintainability of the integrated solution were estimated.
On the basis of the case study, we analyze the advantages and limits of the
architectural approach as such and conclude by outlining directions for
future research: how to incorporate analysis of cost, time to delivery, and
risk in architectural analysis, and how to make architectural analysis more
suitable for comparing many aspects of many alternatives during
development. Finally we outline the limitations of architectural analysis.
Keywords
Architectural Analysis, Enterprise Application Integration, Information
Systems, Legacy Systems, Software Architecture, Software Integration.

1. Introduction
The evolution, migration and integration of existing software (legacy)
systems are widespread and a formidable challenge to today's businesses
[4,19]. This paper will focus on the integration of software systems. Systems
need to be integrated for many reasons. In an organization, processes are
usually supported by several tools and there is a need for integration of these
tools to achieve an integrated and seamless process. Company mergers
demand increased interoperability and integration of tools. Such tools can be
very diverse with respect to technologies, structures and use and their
integration can therefore be very complex, tedious, and time- and effort-
consuming. One important question which arises: Is it feasible to integrate
these tools and which approach is the best to analyze, design and implement
the integration?

[Copyrighted pages 111-130 have been removed, but the original paper can

be retrieved from the IEEE or from the author]

Paper II

Paper II

This paper is a reprint of:
“Software Systems In-House Integration: Architecture, Process Practices and
Strategy Selection”, Rikard Land, Ivica Crnkovic, accepted for publication
in Journal of Information and Software Technology, January 2006

The open-ended interview questions used to collect data are reprinted in
Appendix B.

134 Paper II

Abstract
As organizations merge or collaborate closely, an important question is how
their existing software assets should be handled. If these previously separate
organizations are in the same business domain – they might even have been
competitors – it is likely that they have developed similar software systems.
To rationalize, these existing software assets should be integrated, in the
sense that similar features should be implemented only once. The integration
can be achieved in different ways. Success of it involves properly managing
challenges such as making as well founded decisions as early as possible,
maintaining commitment within the organization, managing the complexities
of distributed teams, and synchronizing the integration efforts with
concurrent evolution of the existing systems.
This paper presents a multiple case study involving nine cases of such in-
house integration processes. Based both on positive and negative
experiences of the cases, we pinpoint crucial issues to consider early in the
process, and suggest a number of process practices.
Keywords
Software integration, software merge, strategic decisions, architectural
compatibility

1 Introduction
When organizations merge, or collaborate very closely, they often bring a
legacy of in-house developed software systems, systems that address similar
problems within the same business. As these systems address similar
problems in the same domain, there is usually some overlap in functionality
and purpose. Independent of whether the software systems are products or
are mainly used in-house, it makes little economic sense to evolve and
maintain systems separately. A single implementation combining the
functionality of the existing systems would improve the situation both from
an economical and maintenance point of view, and also from the point of
view of users, marketing and customers. This situation may also occur as
systems with initially different purposes are developed in-house (typically
by different parts of the organization), and evolved and extended until they
partially implement the same basic functionality; the global optimum for the
organization as a whole would be to integrate these systems into one, so that
there is a single implementation of the same functionality.

[Copyrighted pages 135-192 have been removed, but the original paper can

be retrieved from Elsevier or from the author]

Paper III

Paper III

This paper is a reprint of:
“Integration of Software Systems – Process Challenges”, Rikard Land, Ivica
Crnkovic, Christina Wallin, Proceedings of Euromicro Conference, Track on
Software Process and Product Improvement (SPPI), Antalya, Turkey,
September 2003

The questionnaire form used to collect data from project participants, and the
collected data, can be found in Appendix A.

196 Paper III

Abstract
The assumptions, requirements, and goals of integrating existing software
systems are different compared to other software activities such as
maintenance and development, implying that the integration processes
should be different. But where there are similarities, proven processes
should be used.
In this paper, we analyze the process used by a recently merged company,
with the goal of deciding on an integration approach for three systems. We
point out observations that illustrate key elements of such a process, as well
as challenges for the future.
Keywords
Software Architecture, Software Evolution, Software Integration, Software
Process Improvement.

1. Introduction
Software integration as a special type of software evolution has become
more and more important in recent years [7], but brings new challenges and
complexities. There are many reasons for software integration; in many
cases software integration is a result of company mergers. In this paper we
describe such a case, which illustrates the challenges of the decision process
involved in deciding the basic principles of the integration on the
architectural level.

2. Case Study
Our case study concerns a large North-American industrial enterprise with
thousands of employees that acquired a smaller (~800 employees) European
company in the same, non-software, business area where software, mainly
in-house developed, is used for simulations and management of simulation
data, i.e. as tools for development and production of other products. The
expected benefits of an integration were increased value for users (more
functionality and all related data collected in the same system) as well as
more efficient use of software development and maintenance resources. The
first task was to make a decision on an architecture to choose for the
integrated system. The present paper describes this decision process.

[Copyrighted pages 197-204 have been removed, but the original paper can

be retrieved from the IEEE or from the author]

Paper IV

Paper IV

This paper is a reprint of:
“Software In-House Integration – Quantified Experiences from Industry”,
Rikard Land, Peter Thilenius, Stig Larsson, Ivica Crnkovic, Proceedings of
Euromicro Conference Software Engineering and Advanced Applications,
Track on Software Process and Product Improvement (SPPI), Cavtat,
Croatia, August-September 2006

The questionnaire form used for data collection is reprinted in Appendix D
and the collected data in Appendix E.

208 Paper IV

Abstract
When an organization faces new types of collaboration, for example after a
company merger, there is a need to consolidate the existing in-house
developed software. There are many high-level strategic decisions to be
made, which should be based on as good foundation as possible, while these
decisions must be made rapidly. Also, one must employ feasible processes
and practices in order to get the two previously separate organizations to
work towards a common goal. In order to study this topic, we previously
performed an explorative and qualitative multiple case study, where we
identified a number of suggested practices as well as other concerns to take
into account. This paper presents a follow-up study, which aims at
validating and quantifying these previous findings. This study includes a
questionnaire distributed to in-house integration projects, aiming at
validation of earlier findings. We compare the data to our previous
conclusions, present observations on retirement of the existing systems and
on the technical similarities of the existing systems. We also present some
practices considered important but often neglected.

1. Introduction
When organizations merge, or collaborate very closely, they often bring a
legacy of in-house developed software systems, systems that address similar
problems within the same business. As these systems address similar
problems in the same domain, there is usually some overlap in functionality
and purpose. It makes little economic sense to evolve and maintain these
systems separately (this is true for any kind of system built internally,
independent of whether they are core products offered to the market or are
internally built tools mainly used in-house). A single coherent system would
be ideal. This situation may also occur as systems are independently
developed by different parts of the same organization; as they grow a point
will be reached where there is too much overlap, and should be integrated.
This paper presents the results of a questionnaire survey designed to study
this topic, which we have labelled “in-house integration”.
The questionnaire is based on earlier observations from an explorative
qualitative multiple case study [29]. This previous study consisted of nine
cases from six organizations. The main data source was interviews, but in
several cases, we also had access to certain documentation. The previous
material was analyzed from several points of view [16]:

[Copyrighted pages 209-226 have been removed, but the original paper can

be retrieved from the IEEE or from the author]

Paper V

Paper V

This paper is a reprint of:
“Merging In-House Developed Software Systems – A Method for Exploring
Alternatives”, Rikard Land, Jan Carlson, Stig Larsson, Ivica Crnkovic,
Proceedings of the International Conference on the Quality of Software
Architecture, Västerås, Sweden, June 2006

The open-ended interview questions used to collect case study data are
reprinted in Appendix C.

230 Paper V

Abstract
An increasing form of software evolution is software merge – when two or
more software systems are being merged. The reason may be to achieve new
integrated functions, but also remove duplication of services, code, data, etc.
This situation might occur as systems are evolved in-house, or after a
company acquisition or merger. One potential solution is to merge the
systems by taking components from the two (or more) existing systems and
assemble them into an existing system. The paper presents a method for
exploring merge alternatives at the architectural level, and evaluates the
implications in terms of system features and quality, and the effort needed
for the implementation. The method builds on previous observations from
several case studies. The method includes well-defined core model with a
layer of heuristics in terms of a loosely defined process on top. As an
illustration of the method usage a case study is discussed using the method.

1. Introduction
When organizations merge, or collaborate very closely, they often bring a
legacy of in-house developed software systems. Often these systems address
similar problems within the same business and there is usually some overlap
in functionality and purpose. A new system, combining the functionality of
the existing systems, would improve the situation from an economical and
maintenance point of view, as well as from the point of view of users,
marketing and customers. During a previous study involving nine cases of
such in-house integration [10], we saw some drastic strategies, involving
retiring (some of) the existing systems and reusing some parts, or only
reutilizing knowledge and building a new system from scratch. We also saw
another strategy of resolving this situation, which is the focus of the present
paper: to merge the systems, by reassembling various parts from several
existing system into a new system. From many points of view, this is a
desirable solution, but based on previous research this is typically very
difficult and is not so common in practice; there seem to be some
prerequisites for this to be possible and feasible [10].
There is a need to relatively fast and accurately find and evaluate merge
solutions, and our starting point to address this need has been the following
previous observations [10]:
1. Similar high-level structures seem to be a prerequisite for merge. Thus,

if the structures of the existing systems are not similar, a merge seems in
practice unfeasible.

 231

2. A development-time view of the system is a simple and powerful system

representation, which lends itself to reasoning about project
characteristics, such as division of work and effort estimations.

3. A suggested beneficial practice is to assemble the architects of the
existing systems in a meeting early in the process, where various
solutions are outlined and discussed. During this type of meeting, many
alternatives are partly developed and evaluated until (hopefully) one or a
few high-level alternatives are fully elaborated.

4. The merge will probably take a long time. To sustain commitment
within the organization, and avoid too much of parallel development,
there is a need to perform an evolutionary merge with stepwise
deliveries. To enable this, the existing systems should be delivered
separately, sharing more and more parts until the systems are identical.

This paper presents a systematic method for exploring merge alternatives,
which takes these observations into account: by 1) assuming similar high-
level structures, 2) utilizing static views of the systems, 3) being simple
enough to be able to learn and use during the architects’ meetings, and 4) by
focusing not only on an ideal future system but also stepwise deliveries of
the existing systems. The information gathered from nine case studies was
generalized into the method presented in this paper. To refine the method,
we made further interviews with participants in one of the previous cases,
which implemented the merge strategy most clearly.
The rest of the paper is organized as follows. We define the method in
Section 2 and discuss it by means of an example in Section 3. Section 4
discusses important observations from the case and argues for some general
advices based on this. Section 5 surveys related work. Section 6 summarizes
and concludes the paper and outlines future work.

2. Software Merge Exploration Method
Our software merge exploration method consists of two parts: (i) a model,
i.e., a set of formal concepts and definitions, and (ii) a process, i.e., a set of
human activities that utilizes the model. The model is designed to be simple
but should reflect reality as much as possible, and the process describes
higher-level reasoning and heuristics that are suggested as useful practices.
To help explaining the method, we start with a simple example in Section
2.1, followed by a description of the method’s underlying model (Section
2.2) and the suggested process (Section 2.3).

232 Paper V

2.1 An Explanatory Example
Figure 1a shows two simple music sequencer software systems structured
according to the “Model-View-Controller” pattern [2]. The recorded music
would be the model, which can be viewed as a note score or as a list of
detailed events, and controlled by mouse clicks or by playing a keyboard.
The method uses the module view [3,5] (or development view [8]), which
describes modules and “use” dependencies between them. Parnas defined the
“use” dependency so that module α is said to use module β if module α relies
on the correct behavior of β to accomplish its task [14].
In our method, the term module refers to an encapsulation of a particular
functionality, purpose or responsibility on an abstract level. A concrete
implementation of this functionality is called a module instance. In the
example, both systems have a EventView module, meaning that both
systems provide this particular type of functionality (e.g., a note score view
of the music). The details are probably different in the two systems, though,
since the functionality is provided by different concrete implementations (the
module instances EventViewA and EventViewB, respectively). The method
is not restricted to module instances that are present in the existing systems
but also those that are possible in a future system; such new module
instances could be either a planned implementation (e.g.,
EventViewnew_impl), an already existing module to be reused in-house from
some other program (e.g., EventViewpgm_name), or an open source or
commercial component (EventViewcomponent_name).

2.2 The Model
Our proposed method builds on a model consisting of three parts: a set of
model elements, a definition of inconsistency in terms of the systems’
structures, and a set of permissible user operations.

2.2.1 Concepts and Notation
The following concepts are used in the model:
• We assume there are two or more existing systems, (named with capital

letters, and parameterized by X, Y, etc.).
• A module represents a conceptual system part with a specific purpose

(e.g., EventView in Figure 1). Modules are designated with capital first
letter; in the general case we use Greek letters α and β.

 233

• A module instance represents a realization of a module. It is denoted αX

where α is a module and X is either an existing system (as in
EventViewA) or an indication that the module is new to the systems (as
in EventViewpgm_name or EventViewcomponent_name).

• A “use” dependency (or dependency for short) from module instance αX
to module instance βY means that αX relies on the correct behavior of βY
to accomplish its task. We use the textual notation αX βY to represent
this.

• A dependency graph captures the structure of a system. It is a directed
graph where each node in the graph represents a module instance and the
edges (arrows) represent use dependencies. In Figure 1a, we have for
example the dependencies NoteViewA MusicModelA and
MouseCtrlB MusicModelB.

• An adaptation describes that a modification is made to αX in order for it
to be compatible, or consistent with βY, and is denoted 〈αX, βY〉 (see 2.2.2
below).

• A scenario consists of a dependency graph for each existing system and
a single set of adaptations.

Event
ViewA

Mouse
CtrlA

Note
ViewA

System A System B

Adaptation Set: <KbdCtrlnew, MusicModelA> <MusicModelB, MouseCtrlA>

Music
ModelA

Kbd
CtrlA

Event
ViewB

Mouse
CtrlB

Note
ViewB

Music
ModelB

Kbd
CtrlB

Event
ViewA

Mouse
CtrlA

Note
ViewB

System A System B

Music
ModelA

Kbd
Ctrlnew

Event
ViewA

Mouse
CtrlA

Note
ViewB

Music
ModelB

Kbd
CtrlB

a) Initial state

b) State after some changes have been made to the systems

Figure 1. Two example systems with the same structure being merged.

234 Paper V

2.2.2 Inconsistency
A dependency from αX to βY can be inconsistent, meaning that βY cannot be
used by αX. Trivially, the dependency between two module instances from
the same system is consistent without further adaptation. For the dependency
between two modules from different systems we cannot say whether they are
consistent or not. Most probably they are inconsistent, which has to be
resolved by some kind of adaptation if we want to use them together in a
new system. The actual adaptations made could in practice be of many
kinds: some wrapping or bridging code, or modifications of individual lines
of code; see further discussion in 4.1.
Formally, a dependency αX βY is consistent if X = Y or if the adaptation
set contains 〈αX, βY〉 or 〈βY, αX〉. Otherwise, the dependency is inconsistent. A
dependency graph is consistent if all dependencies are consistent; otherwise
it is inconsistent. A scenario is consistent if all dependency graphs are
consistent; otherwise it is inconsistent.
Example: The scenario in Figure 1b is inconsistent, because of the
inconsistent dependencies from NoteViewB to MusicModelA (in System A)
and from EventViewA to MusicModelB (in System B). The dependencies
from KbdCtrlnew to MusicModelA (in System A) and from MouseCtrlA to
MusicModelB (in System B) on the other hand are consistent, since there
are adaptations 〈KbdCtrlnew, MusicModelA〉 and 〈MusicModelB,
MouseCtrlA〉 representing that KbdCtrlnew and MusicModelB have been
modified to be consistent with MusicModelA and MouseCtrlA respectively.

2.2.3 Scenario Operations
The following operations can be performed on a scenario:
1. Add an adaptation to the adaptation set.
2. Remove an adaptation from the adaptation set.
3. Add the module instance αX to one of the dependency graphs, if there

exists an αY in the graph. Additionally, for each module β, such that
there is a dependency αY βZ in the graph, a dependency αX βW must
be added for some βW in the graph.

4. Add the dependency αX βW if there exist a dependency αX βZ (with
Z≠W) in the graph.

5. Remove the dependency αX βW if there exists a dependency αX βZ
(with Z≠W) in the graph.

 235

6. Remove the module instance αX from one of the dependency graphs, if

there are no edges to αX in the graph, and if the graph contains another
module instance αY (i.e., with X≠Y).

Note that these operations never change the participating modules of the
graphs (if there is an αX in the initial systems, they will always contain some
αY). Similarly, dependencies between modules are also preserved Note also
that we allow two or more instances for the same module in a system; when
this could be suitable for a real system is discussed in 4.2.

2.3 The Process
The suggested process consists of two phases, the first consisting of two
simple preparatory activities (P-I and P-II), and the second being recursive
and exploratory (E-I – E-IV).
The scope of the method is within an early meeting of architects, where they
(among other tasks) outline various merge solutions. To be able to evaluate
various alternatives, some evaluation criteria should be provided by
management, product owners, or similar stakeholders. Such criteria can
include quality attributes for the system, but also considerations regarding
development parameters such as cost and time limits. Other boundary
conditions are the strategy for the future architecture and anticipated changes
in the development organization. Depending on the circumstances,
evaluation criteria and boundary conditions could be renegotiated to some
extent, once concrete alternatives are developed.

2.3.1 Preparatory Phase
The Preparatory phase consists of two activities:
Activity P-I: Describe Existing Systems. First, the dependency graphs of
the existing systems must be prepared, and common modules must be
identified. These graphs could be found in existing models or
documentation, or extracted by reverse engineering methods, or simply
created by the architects themselves.
Activity P-II: Describe Desired Future Architecture. The dependency
graph of the future system has the same structure, in terms of modules, as the
existing systems. For some modules it may be imperative to use some
specific module instance (e.g., αX because it has richer functionality than αY,
or a new implementation αnew because there have been quality problems with
the existing αX and αY). For other modules, αX might be preferred over αY,

236 Paper V

but the final choice will also depend on other implications of the choice,
which is not known until different alternatives are explored. The result of
this activity is an outline of a desired future system, with some annotations,
that serve as a guide during the exploratory phase. This should include some
quality goals for the system as a whole.

2.3.2 Exploratory Phase
The result of the preparatory phase is a single scenario corresponding to the
structure and module instances of the existing systems. The exploratory
phase can then be described in terms of four activities: E-I “Introduce
Desired Changes”, E-II “Resolve Inconsistencies”, E-III “Branch Scenarios”,
and E-IV “Evaluate Scenarios”.
The order between them is not pre-determined; any activity could be
performed after any of the others. They are however not completely
arbitrary: early in the process, there will be an emphasis on activity E-I,
where desired changes are introduced. These changes will lead to
inconsistencies that need to be resolved in activity E-II. As the exploration
continues, one will need to branch scenarios in order to explore different
choices; this is done in activity E-III. One also wants to continually evaluate
the scenarios and compare them, which is done in activity E-IV. Towards
the end when there are a number of consistent scenarios there will be an
emphasis on evaluating these deliveries of the existing systems. For all these
activities, decisions should be described so they are motivated by, and
traceable to, the specified evaluation criteria and boundary conditions. These
activities describe high-level operations that are often useful, but nothing
prohibits the user from carrying out any of the primitive operations defined
above at any time.
Activity E-I: Introduce Desired Changes. Some module instances, desired
in the future system, should be introduced into the existing systems. In some
cases, it is imperative where to start (as described for activity P-II); the
choice may e.g., depend on the local priorities for each system (e.g., “we
need to improve the MusicModel of system A”), and/or some strategic
considerations concerning how to make the envisioned merge succeed (e.g.,
“the MusicModel should be made a common module as soon as possible”).
Activity E-II: Resolve Inconsistencies. As modules are exchanged in the
graphs, dependencies αX βY might become inconsistent. There are several
ways of resolving these inconsistencies:
• Either of the two module instances could be modified to be consistent

with the interface of the other. In the model, this means adding an

 237

adaptation to the adaptation set. In the example of Figure 1b, the
inconsistency between NoteViewB and MusicModelA in System A can
be solved by adding either of the adaptations 〈NoteViewB,
MusicModelA〉 or 〈MusicModelA, NoteViewB〉 to the adaptation set.
(Different types of possible modifications in practice are discussed in
Section 4.1.)

• Either of the two module instances could be exchanged for another.
There are several variations on this:
− A module instance is chosen so that the new pair of components is

already consistent. This means that αX is exchanged either for αY
(which is consistent with βY as they come from the same system Y)
or for some other αZ for which there is an adaptation 〈αZ, βY〉 or 〈βY,
αZ〉. Alternatively, βY is exchanged for βX or some other βZ for which
there is an adaptation 〈βZ, αX〉 or 〈αX , βZ〉. In the example of Figure
1b, MusicModelA could be replaced by MusicModelB to resolve the
inconsistent dependency NoteViewB MusicModelA in System
A.

− A module instance is chosen that did not exist in either of the
previous systems. This could be either of:
i) a module reused in-house from some other program (which

would come with an adaptation cost),
ii) a planned or hypothesized new development (which would have

an implementation cost, but low or no adaptation cost), or
iii) an open source or commercial component (which involves

acquirement costs as well as adaptation costs, which one would
like to keep separate).

• One more module instance could be introduced for one of the modules,
to exist in parallel with the existing; the new module instance would be
chosen so that it already is consistent with the instance of the other
module (as described for exchanging components). The previous
example in Figure 1a and b is too simple to illustrate the need for this,
but in Section 4 the industrial case will illustrate when this might be
needed and feasible. Coexisting modules are also further discussed in
Section 4.1.

Some introduced changes will cause new inconsistencies, that need to be
resolved (i.e., this activity need to be performed iteratively).

238 Paper V

Activity E-III: Branch Scenarios. As a scenario is evolved by applying the
operations to it (most often according to either of the high-level approaches
of activities E-I and E-II), there will be occasions where it is desired to
explore two or more different choices in parallel. For example, several of the
resolutions suggested in activity E-II might make intuitive sense, and both
choices should be explored. It is then possible to copy the scenario, and treat
the two copies as branches of the same tree, having some choices in common
but also some different choices.
Activity E-IV: Evaluate Scenarios. As scenarios evolve, they need to be
evaluated in order to decide which branches to evolve further and which to
abandon. Towards the end of the process, one will also want to evaluate the
final alternatives more thoroughly, and compare them – both with each other
and with the pre-specified evaluation criteria and boundary conditions
(which might at this point be reconsidered to some extent). The actual state
of the systems must be evaluated, i.e., the actually chosen module instances
plus the modifications to reduce inconsistencies). Do the systems contain
many shared modules? Are the chosen modules the ones desired for the
future system (richest functionality, highest quality, etc.)? Can the system as
a whole be expected to meet its quality goals?

2.3.3 Accumulating Information
As these activities are carried out, there is some information that should be
stored for use in later activities. As operations are performed, information is
accumulated. Although this information is created as part of an operation
within a specific scenario, the information can be used in all other scenarios;
this idea would be particularly useful when implemented in a tool. We
envision that any particular project or tool would define its own formats and
types of information; in the following we give some suggestions of such
useful information and how it would be used.
Throughout the exploratory activities, it would be useful to have some
ranking of modules readily available, such as “EventViewA is preferred over
EventViewB because it has higher quality”. A tool could use this
information to color the chosen modules to show how well the outlined
alternatives fit the desired future system.
For activity E-II “Resolve Inconsistencies”, it would be useful to have
information about e.g., which module could or could not coexist in parallel.
Also, some information should be stored that is related to how the
inconsistencies are solved. There should at least be a short textual
description of what an adaptation means in practice. Other useful

 239

information would be the efforts and costs associated with each acquirement
and adaptation; if this information is collected by a tool, it becomes possible
to extract a list of actions required per scenario, including the textual
descriptions of adaptations and effort estimates. It is also possible to reason
about how much of the efforts required that are “wasted”, that is: is most of
the effort related to modifications that actually lead towards the desired
future system, or is much effort required to make modules fit only for the
next delivery and then discarded? The evaluation criteria and boundary
conditions mentioned in Section 2.2 could also be used by a tool to aid or
guide the evaluation in the activity E-IV.

3. An Industrial Case Study
In a previous multiple case study on the topic of in-house integration, the
nine cases in six organizations had implemented different integration
solutions [10]. We returned to the one case that had clearly chosen the merge
strategy and successfully implemented it (although it is not formally released
yet); in previous publications this case is labelled “case F2”. The fact that
this was one case out of nine indicates that the prerequisites for a merge are
not always fulfilled, but also that they are not unrealistic (two more cases
involved reusing parts from several existing systems in a way that could be
described as a merge). To motivate the applicability of the proposed method,
this section describes the events of an industrial case and places them in the
context of our method.

3.1 Research Method
This part of the research is thus a single case study [17]. Our sources of
information have been face-to-face interviews with the three main
developers on the US side (there is no title “architect” within the company)
and the two main developers on the Swedish side, as well as the high-level
documentation of the Swedish system. All discussion questions and answers
are published together with more details on the study’s design in a technical
report [9].
Although the reasoning of the case follows the method closely, the case also
demonstrates some inefficiency due to not exploring the technical
implications of the merge fully beforehand. It therefore supports the idea of
the method being employed to analyze and explore merge alternatives early,

240 Paper V

before committing to a particular strategy for the in-house integration (merge
or some other strategy).

3.2 The Case
The organization in the case is a US-based global company that acquired a
slightly smaller global company in the same business domain, based in
Sweden. To support the core business, computer simulations are conducted.
Both sites have developed software for simulating 3D physics, containing
state-of-the-art physics models, many of the models also developed in-house.
As the results are used for real-world decisions potentially affecting the
environment and human lives, the simulation results must be accurate (i.e.,
the output must correspond closely to reality). As the simulations are carried
out off-line and the users are physics specialists, many other runtime quality
properties of the simulation programs are not crucial, such as reliability (if
the program crashes for a certain input, the bug is located and removed),
user-friendliness, performance, or portability. On the other side, the accuracy
of the results are crucial.
Both systems are written in Fortran and consist of several hundreds of
thousands lines of code, and the staff responsible for evolving these
simulators are the interviewees, i.e., less than a handful on each site. There
was a strategic decision to integrate or merge the systems in the long term.
This should be done through cooperation whenever possible, rather than as a
separate up-front project.
The rest of this section describes the events of the case in terms of the
proposed activities of the method. It should be noted that although the
interviewees met in a small group to discuss alternatives, they did not follow
the proposed method strictly (which is natural, as the method has been
formulated after, and partly influenced by, these events).
Activity P-I: Describe Existing Systems. Both existing systems are written
in the same programming language (Fortran), and it was realized early that
the two systems have very similar structure, see Figure 2a). There is a main
program (Main) invoking a number of physics modules (PX, PY, PZ, …) at
appropriate times, within two main loops. Before any calculations, an
initialization module (Init) reads data from input files and the internal data
structures (DS) are initialized. The physics modeled is complex, leading to
complex interactions where the solution of one module affects others in a
non-hierarchical manner. After the physics calculations are finished, a file

 241

management module (FM) is invoked, which collects and prints the results to
file. All these modules use a common error handling and logging library
(EL), and share the same data structures (DS). A merge seemed plausible
also thanks to the similarities of the data models; the two programs model
the same reality in similar ways.
Activity P-II: Describe Desired Future Architecture. The starting point
was to develop a common module for one particular aspect of the physics
(PXnew), as both sides had experienced some limitations of their respective
current physics models. Now being in the same company, it was imperative
that they would join efforts and develop a new module that would be
common to both programs; this project received some extra integration
funding. Independent of the integration efforts, there was a common wish on
both sides to take advantage of newer Fortran constructs to improve
encapsulation and enforce stronger static checks.
Activity E-I: Introduce Desired Changes. As said, the starting point for
integration was the module PX. Both sides wanted a fundamentally new
physics model, so the implementation was also completely new (no reuse),
written by one of the Swedish developers. The two systems also used
different formats for input and output files, managed by file handling
modules (FMSE and FMUS). The US system chose to incorporate the
Swedish module for this, which has required some changes to the modules
using the file handling module.
Activity E-II: Resolve Inconsistencies. The PX module of both systems
accesses large data structures (DS) in global memory, shared with the other
physics modules. An approach was tried where adapters were introduced
between a commonly defined interface and the old implementations, but was
abandoned as this solution became too complex. Instead, a new
implementation of data structures was introduced. This was partially chosen
because it gave the opportunity to use newer Fortran constructs which made
the code more structured, and it enabled some encapsulation and access
control as well as stronger type checking than before.

242 Paper V

InitSE

MainSE

PXSE

ELSE FMSEDSSE

Swedish System

PrintSE
...PYSE PZSE InitUS

MainUS

PXUS

ELUS FMUSDSUS

US System

PrintUS
...PYUS PZUS

InitSE

MainSE

PXnew

ELnew FMSEDSSE

Swedish System

PrintSEPYSE PZSE InitUS

MainUS

PXnew

ELnew FMSE

US System

PrintUSPYUS PZUS

ELSE

PXSE

DSnew DSUSDSnew

Init?

Main?

PXnew

ELnew FMSE

Print?...PY? PZ?

DSnew

a) Initial state

b) Current state

c) Future System

... ...

Adaptation set: <MainSE, PXnew> <PXnew, ELnew> <PXnew, DSnew> <MainUS, PXnew> <PYUS, ELnew>
 <PYUS, DSnew> <PZUS, ELnew> <PZUS, DSnew>

Figure 2: The current status of the systems of the case.

 243

This led to new inconsistencies that needed to be resolved. In the US system,
six man-months were spent on modifying the existing code to use the new
data structures. The initialization and printout modules remained untouched
however; instead a solution was chosen where data is moved from the old
structures (DSSE and DSUS) to the new (DSnew) after the initialization
module has populated the old structures, and data is moved back to the old
structures before the printout module executes. In the Swedish system, only
the parts of the data structures that are used by the PX module are utilized,
the other parts of the program uses the old structures; the few data that are
used both by the PX module and others had to be handled separately.
The existing libraries for error handling and logging (EL) would also need
some improvements in the future. Instead of implementing the new PX
module to fit the old EL module, a new EL module was implemented. The
new PX module was built to use the new EL module, but the developers saw
no major problems to let the old EL module continue to be used by other
modules (otherwise there would be an undesirable ripple effect). However,
for each internal shipment of the PX module, the US staff commented away
the calls to the EL library; this was the fastest way to make it fit. In the short
term this was perfectly sensible, since the next US release would only be
used for validating the new model together with the old system. However,
spending time commenting away code was an inefficient way of working,
and eventually the US site incorporated the EL library and modified all other
modules to use it; this was not too difficult as it basically involved replacing
certain subroutine calls with others. In the Swedish system, the new EL
library was used by the new PX module, while the existing EL module was
used in parallel, to avoid modifying other modules that used it. Having two
parallel EL libraries was not considered a major quality risk in the short run.
Modifying the main loop of each system, to make it call the new PX module
instead of the old, was trivial. In the Swedish system there will be a startup
switch for some years to come, allowing users to choose between the old and
the new PX module for each execution. This is useful for validation of
PXnew and is presented as a feature for customers.
E-III Branch Scenarios. As we are describing the actual sequence of
events, this activity cannot be reported as such, although different
alternatives were certainly discussed – and even attempted and abandoned,
as for the data structure adapters.
E-IV Evaluate Scenarios. This activity is also difficult to isolate after the
fact, as we have no available reports on considerations made. It appears as
functionality was a much more important factor than non-functional (quality)

244 Paper V

attributes at the module level. At system level, concerns about development
time qualities (e.g., discussions about parallel module instances and the
impact on maintenance) seem to have been discussed more than runtime
qualities (possibly because runtime qualities in this case are not crucial).
Figure 2 shows the initial and current state of the systems, as well as the
desired outlined future system. (It is still discussed whether to reuse the
module from either of the systems or create a new implementation, hence the
question marks).

4. Discussion
This section discusses various considerations to be made during the
exploration and evaluation, as highlighted by the case.

4.1 Coexisting Modules
To resolve an inconsistency between two module instances, there is the
option of allowing two module instances (operation 2). Replacing the
module completely will have cascading effects on the consistencies for all
edges connected to it (both “used-by” and “using”), so having several
instances has the least direct impact in the model (potentially the least
modification efforts). However, it is not always feasible in practice to allow
two implementations with the same purpose. The installation and runtime
costs associated with having several modules for the same task might be
prohibiting if resources are scarce. It might also be fundamentally assumed
that there is only one single instance responsible for a certain functionality,
e.g., for managing central resources. Examples could be thread creation and
allocation, access control to various resources (hardware or software),
security, etc. Finally, at development time, coexisting components violates
the conceptual integrity of the system, and results in a larger code base and a
larger number of interfaces to keep consistent during further evolution and
maintenance. From this point of view, coexisting modules might be allowed
as a temporary solution for an intermediate delivery, while planning for a
future system with a single instance of each module (as in the case for
modules EL and DS). However, the case also illustrates how the ability to
choose either of the two modules for each new execution was considered
useful (PXSE and PXnew in the Swedish system).

 245

We can see the following types of relationships between two particular
module instances of the same module:
• Arbitrary usage. Any of the two parallel modules may be invoked at

any time. This seems applicable for library type modules, i.e., modules
that retains no state but only performs some action and returns, as the EL
module in the case.

• Alternating usage. If arbitrary usage cannot be allowed, it might be
possible to define some rules for synchronization that will allow both
modules to exist in the system. In the case, we saw accesses to old and
new data structures in a pre-defined order, which required some means
of synchronizing data at the appropriate points in time. One could also
imagine other, more dynamic types of synchronization mechanisms
useful for other types of systems: a rule stating which module to be
called depending on the current mode of the system, or two parallel
processes that are synchronized via some shared variables. (Although
these kinds of solutions could be seen as a new module, the current
version of the method only allows this to be specified as text associated
to an adaptation.)

• Initial choice. The services of the modules may be infeasible to share
between two modules, even over time. Someone will need to select
which module instance to use, e.g., at compile time by means of
compilation switches, or with an initialization parameter provided by the
user at run-time. This was the case for the PXSE and PXnew modules in
the Swedish system.

The last two types of relationships requires some principle decision and rules
at the system (architectural) level, while the signifying feature of the first is
that the correct overall behaviour of the program is totally independent of
which module instance is used at any particular time.

4.2 Similarity of Systems
As described in 2.1, the model requires that the structures of the existing
systems are identical, which may seem a rather strong assumption. It is
motivated by the following three arguments [10]:
• The previous multiple case study mentioned in Section 3.1 strongly

suggests that similar structures is a prerequisite for merge to make sense
in practice. That means that if the structures are dissimilar, practice has
shown that some other strategy will very likely be more feasible (e.g.,

246 Paper V

involving the retirement of some systems). Consequently, there is little
motivation to devise a method that covers also this situation.

• We also observed that it is not so unlikely that systems in the same
domain, built during the same era, indeed have similar structures.

• If the structures are not very similar at a detailed level, it might be
possible to find a higher level of abstraction where the systems are
similar.

A common type of difference, that should not pose large difficulties in
practice, is if some modules and dependencies are similar, and the systems
have some modules that are only extensions to a common architecture. For
example, in the example system one of the systems could have an additional
View module (say, a piano roll visualization of the music); in the industrial
case we could imagine one of the systems to have a module modeling one
more aspect of physics (PW) than the other. However, a simple workaround
solution in the current version of the method is to introduce virtual module
instances, i.e., modules that do not exist in the real system (which are of
course not desired in the future system).

5. Related Work
There is much literature to be found on the topic of software integration.
Three major fields of software integration are component-based software
[16], open systems [13], and Enterprise Application Integration, EAI [15].
However, we have found no existing literature that directly addresses the
context of the present research: integration or merge of software controlled
and owned within an organization. These existing fields address somewhat
different problems than ours, as these fields concern components or systems
complementing each other rather than systems that overlap functionally.
Also, it is typically assumed that components or systems are acquired from
third parties and that modifying them is not an option, a constraint that does
not apply to the in-house situation. Software reuse typically assumes that
components are initially built to be reused in various contexts, as COTS
components or as a reuse program implemented throughout an organization
[7], but in our context the system components were likely not being built
with reuse in mind.
It is commonly expressed that a software architecture should be documented
and described according to different views [3,5,6,8]. One frequently
proposed view is the module view [3,5] (or development view [8]),

 247

describing development abstractions such as layers and modules and their
relationships. The dependencies between the development time artifacts
were first defined by Parnas [14] and are during ordinary software evolution
the natural tool to understand how modifications made to one component
propagate to other.
The notion of “architectural mismatch” is well known, meaning the many
types of incompatibilities that may occur when assembling components built
under different assumptions and using different technologies [4]. There are
some methods for automatically merging software, mainly source code [1],
not least in the context of configuration management systems [12]. However,
these approaches are unfeasible for merging large systems with complex
requirements, functionality, quality, and stakeholder interests. The
abstraction level must be higher.

6. Conclusions and Future Work
The problem of integrating and merging large complex software systems
owned in-house is essentially unexplored. The method presented in this
paper addresses the problem of rapidly outlining various merge alternatives,
i.e., exploring how modules could be reused across existing systems to
enable an evolutionary merge. The method makes visible various merge
alternatives and enables reasoning about the resulting functionality of the
merged system as well as about the quality attributes of interest (including
both development time and runtime qualities).
The method consists of a formal model with a loosely defined heuristics-
based process on top. The goal has been to keep the underlying model as
simple as possible while being powerful enough to capture the events of a
real industrial case. One of the main drivers during its development has been
simplicity, envisioned to be used as a decision support tool at a meeting
early in the integration process, with architects of the existing systems. As
such, it allows rapid exploration of multiple scenarios in parallel. We have
chosen the simplest possible representation of structure, the module view.
For simplicity, the method in its current version mandates that the systems
have identical structures. This assumption we have shown is not
unreasonable but can also be worked around for minor discrepancies. The
method is designed so that stepwise deliveries of the existing systems are
made, sharing more and more modules, to enable a true evolutionary merge.

248 Paper V

Assisted by a tool, it would be possible to conveniently record information
concerning all decisions made during the exploration, for later processing
and presentation, thus giving an advantage over only paper and pen. We are
implementing such a tool, which already exist as a prototype [11]. It displays
the graphs of the systems, allows user-friendly operations, highlights
inconsistencies with colors, and is highly interactive to support the
explorative process suggested. The information collected, in the form of
short text descriptions and effort estimations, enables reasoning about
subsequent implementation activities. For example, how much effort is the
minimum for a first delivery where some module is shared? What parts of a
stepwise delivery are only intermediate, and how much effort is thus wasted
in the long term?
There are several directions for extending the method: First, understanding
and bridging differences in existing data models and technology frameworks
of the existing systems is crucial for success and should be part of a merge
method. Second, the model could be extended to allow a certain amount of
structural differences between systems. Third, the module view is intended
to reveal only static dependencies, but other types of relationships are
arguably important to consider in reality. Therefore, we intend to investigate
how the method can be extended to include more powerful languages,
including e.g., different dependency types and different adaptation types,
and extended also to other views.

6.1 Acknowledgements
We would like to thank all interviewees and their organization for sharing
their experiences and allowing us to publish them. Also thanks to Laurens
Blankers for previous collaboration that has led to the present paper, and for
our discussions on architectural compatibility.

7. References
 [1] Berzins V., “Software merge: semantics of combining changes to

programs”, In ACM Transactions on Programming Languages and
Systems (TOPLAS), volume 16, issue 6, pp. 1875-1903, 1994.

 [2] Buschmann F., Meunier R., Rohnert H., Sommerlad P., and Stal M.,
Pattern-Oriented Software Architecture - A System of Patterns, ISBN
0-471-95869-7, John Wiley & Sons, 1996.

 249

 [3] Clements P., Bachmann F., Bass L., Garlan D., Ivers J., Little R., Nord

R., and Stafford J., Documenting Software Architectures: Views and
Beyond, ISBN 0-201-70372-6, Addison-Wesley, 2002.

 [4] Garlan D., Allen R., and Ockerbloom J., “Architectural Mismatch:
Why Reuse is so Hard”, In IEEE Software, volume 12, issue 6, pp. 17-
26, 1995.

 [5] Hofmeister C., Nord R., and Soni D., Applied Software Architecture,
ISBN 0-201-32571-3, Addison-Wesley, 2000.

 [6] IEEE Architecture Working Group, IEEE Recommended Practice for
Architectural Description of Software-Intensive Systems, IEEE Std
1471-2000, IEEE, 2000.

 [7] Karlsson E.-A., Software Reuse : A Holistic Approach, Wiley Series in
Software Based Systems, ISBN 0 471 95819 0, John Wiley & Sons
Ltd., 1995.

 [8] Kruchten P., “The 4+1 View Model of Architecture”, In IEEE
Software, volume 12, issue 6, pp. 42-50, 1995.

 [9] Land R., Interviews on Software Systems Merge, MRTC report,
Mälardalen Real-Time Research Centre, Mälardalen University, 2006.

[10] Land R. and Crnkovic I., “Software Systems In-House Integration:
Architecture, Process Practices and Strategy Selection”, In Information
& Software Technology, Accepted for publication, 2006.

[11] Land R. and Lakotic M., “A Tool for Exploring Software Systems
Merge Alternatives”, In Proceedings of International ERCIM
Workshop on Software Evolution , 2006.

[12] Mens T., “A state-of-the-art survey on software merging”, In IEEE
Transactions on Software Engineering, volume 28, issue 5, pp. 449-
462, 2002.

[13] Meyers C. and Oberndorf P., Managing Software Acquisition: Open
Systems and COTS Products, ISBN 0201704544, Addison-Wesley,
2001.

[14] Parnas D. L., “Designing Software for Ease of Extension and
Contraction”, In IEEE Transaction on Software Engineering, volume
SE-5, issue 2, pp. 128-138, 1979.

[15] Ruh W. A., Maginnis F. X., and Brown W. J., Enterprise Application
Integration, A Wiley Tech Brief, ISBN 0471376418, John Wiley &
Sons, 2000.

250 Paper V

[16] Wallnau K. C., Hissam S. A., and Seacord R. C., Building Systems

from Commercial Components, ISBN 0-201-70064-6, Addison-
Wesley, 2001.

[17] Yin R. K., Case Study Research : Design and Methods (3rd edition),
ISBN 0-7619-2553-8, Sage Publications, 2003.

Paper VI

Paper VI

This paper is a reprint of:
“A Tool for Exploring Software Systems Merge Alternatives”, Rikard Land,
Miroslav Lakotic, Proceedings of International ERCIM Workshop on
Software Evolution, p 113-118, Lille, France, April, 2006

254 Paper VI

Abstract
The present paper presents a tool for exploring different ways of merging
software systems, which may be one way of resolving the situation when an
organization is in control of functionally overlapping systems. It uses
dependency graphs of the existing systems and allows intuitive exploration
and evaluation of several alternatives.

1. Introduction
It is well known that successful software systems has to evolve to stay
successful, i.e. it is modified in various ways and released anew [11,15,16].
Some modification requests concern error removal; others are extensions or
quality improvements. A current trend is to include more possibilities for
integration and interoperability with other software systems. Typical means
for achieving this is by supporting open or de facto standards [13] or (in the
domain of enterprise information systems) through middleware [4]. This
type of integration concerns information exchange between systems of
mainly complementary functionality. There is however an important area of
software systems integration that has so far been little researched, namely of
systems that are developed in-house and overlap functionally. This may
occur when systems, although initially addressing different problems, evolve
and grow to include richer and richer functionality. More drastically, this
also happens after company acquisitions and mergers, or other types of close
collaborations between organizations. A new system combining the
functionality of the existing systems would improve the situation from an
economical and maintenance point of view, as well as from the point of view
of users, marketing and customers.

1.1 Background Research
To investigate how organizations have addressed this challenge, which we
have labeled in-house integration, we have previously performed a
qualitative multiple case study [21] consisting of nine cases in six
organizations.
At a high level, there seems to be four strategies that are analytically easy to
understand [10]: No Integration (i.e. do nothing), Start from Scratch (i.e.
initiate development of a replacing system, and plan for retiring the existing
ones), Choose One (choose the existing system that is most satisfactory and

 255

evolve it while planning for retiring the others), and – the focus of the
present paper – Merge (take components from several of the existing
systems, modify them to make them fit and reassemble them).
There may be several reasons for not attempting a Merge, for example if the
existing systems are considered aged, or if users are dissatisfied and
improvements would require major efforts. Reusing experience instead of
implementations might then be the best choice. Nevertheless, Merge is a
tempting possibility, because users and customers from the previous systems
would feel at home with the new system, no or very little effort would be
spent on new development (only on modifications), and the risk would be
reduced in the sense that components are of known quality. It would also be
possible to perform the Merge in an evolutionary manner by evolving the
existing systems so that more and more parts are shared; this might be a
necessity to sustain commitment and focus of the integration project. Among
the nine cases of the case study, only in one case was the Merge clearly
chosen as the overall strategy and has also made some progress, although
there were elements of reuse between existing systems also in some of the
other cases. Given this background research, we considered the Merge
strategy to be the least researched and understood and the least performed in
practice, as well as the most intellectually challenging.

1.2 Continuing with Merge
To explore the Merge strategy further, we returned to one of the cases and
performed follow-up interviews focused on compatibility and the reasons for
choosing one or the other component. The organizational context is a US-
based global company that acquired a slightly smaller global company in the
same business domain, based in Sweden. The company conducts physics
computer simulations as part of their core business, and both sites have
developed their own 3D physics simulator software systems. Both systems
are written in Fortran and consist of several hundreds of thousands lines of
code, a large part of which are a number of physics models, each modeling a
different kind of physics. The staff responsible for evolving these simulators
is less than a handful on each site, and interviews with these people are our
main source of information [9].
At both sites, there were problems with their model for a particular kind of
physics, and both sites had plans to improve it significantly (independent of
the merge). There was a strategic decision to integrate or merge the systems
in the long term, the starting point being this specific physics module. This

256 Paper VI

study involved interviewing more people. It should be noted that although
the interviewees met in a small group to discuss alternatives, they did not use
our tool, since the tool has been created after, and partly influenced by, these
events. The case is nevertheless used as an example throughout the present
paper, to illustrate both the possibilities of the tool and motivate its
usefulness in practice.
In an in-house integration project, there is typically a small group of
architects who meet and outline various solutions [10]. This was true for the
mentioned case as well as several others in the previous study. In this early
phase, variants of the Merge strategy should be explored, elaborated, and
evaluated. The rest of the paper describes how the tool is designed to be used
in this context. The tool is not intended to automatically analyze or generate
any parts of the real systems, only serve as a decision support tool used
mainly during a few days’ meeting. One important design goal has therefore
been simplicity, and it can be seen as an electronic version of a whiteboard
or pen-end-paper used during discussions, although with some advantages as
we will show.

1.3 Related Work
Although the field of software evolution has been maturing since the
seventies [11,16], there is no literature to be found on software in-house
integration and merge. Software integration as published in literature can
roughly be classified into: Component-Based Software Engineering [19,20],
b) standard interfaces and open systems [13], and c) Enterprise Application
Integration (EAI) [6,18]. These fields typically assume that components or
systems are acquired from third parties and that modifying them is not an
option, which is not true in the in-house situation. Also, these fields address
components or systems complementing each other (with the goal of to
reducing development costs and time) rather than systems that overlap
functionally (with rationalization of maintenance as an important goal).
Although there are methods for merging source code [3,12], these
approaches are unfeasible for merging large systems with complex
requirements, functionality, quality, and stakeholder interests. The
abstraction level must be higher.
We have chosen to implement a simple architectural view, the module view
[5,7] (or development view [8]), which is used to describe development
abstractions such as layers and modules and their relationships. Such
dependency graphs, first defined by Parnas [14], are during ordinary

 257

software evolution the natural tool to understand how modifications
propagate throughout a system.

2. The Tool
The tool was developed by students as part of a project course. The
foundation of the tool is a method for software merge. As this is ongoing
work, this paper is structured according to the method but focuses on the
tool. We also intend to publish the method separately, as it has been refined
during the tool implementation – after which it is time to further improve the
tool.
The method makes use of dependency graphs of the existing systems. There
is a formal model at the core, with a loosely defined process on top based on
heuristics and providing some useful higher-level operations. The tool
conceptually makes the same distinction: there are the formally defined
concepts and operations which cannot be violated, as well as higher-level
operations and ways of visualizing the model, as suggested by the informal
process. In this manner, the user is gently guided towards certain choices,
but never forced. A fundamental idea with both the method and the tool is
that they should support the exploratory way of working – not hinder it.
The actual tool is implemented as an Eclipse plug-in [1]. The model of the
tool is based on the formal model mentioned above, and its design follows
the same rules and constraints. The model was made using Eclipse Modeling
Framework, and presented by Graphics Eclipse Framework combined using
the Model-Controller-View architecture. This makes the tool adaptable and
upgradeable.

2.1 Preparatory Phase
There are two preparatory activities:
Activity P-I: Describe Existing Systems. The user first needs to describe
the existing systems as well as outline a desired future system. The current
implementation supports two existing systems, but the underlying model is
not limited to only two.
Activity P-II: Describe Desired Future Architecture. The suggestion of
the final system is determined simply by choosing which modules are
preferred in the outcome. Any system, A or B can then be experimented

258 Paper VI

upon, and the progress can be followed through a scenario tree. Figure 1
shows a snapshot of the tool with the two existing systems at the top and the
future system at the bottom. It might be noted that the existing systems have
– and must have – identical structures (this assumption is further discussed
in section 2.3).

2.2 Exploratory Phase
The goal of the exploration is two system descriptions where some modules
have been exchanged, so that the systems are evolved in parallel towards the
desired future, merged system. The goal is not only to describe the future
system (one graph would then be enough, and no tool support needed) but to
arrive at next releases of the systems, in order to perform the merge
gradually, as a sequence of parallel releases of the two existing systems until
they are identical. This will involve many tradeoffs on the behalf of the
architects (and other stakeholders) between e.g. efforts to be spent only on
making things fit for the next release and more effort to include the more
desired modules, which will delay next release of a system. The tool does
not solve these tradeoffs but supports reasoning about them. There are four
activities defined in the exploratory phase, with a rough ordering as follows,
but also a number of iterations.
Activity E-I: Introduce Desired Changes. The starting point for
exploration is to introduce some desired change. In the case, it was
imperative to start by assuming a newly developed physics module (PX in
the figures) to be shared by both systems. In other situations, the actual
module to start with might not be given. In the tool, this is done by choosing
the preferred module in the final system view, by clicking on the
checkboxes. A new module can also be attached to the old system. This is
done by clicking on the node in final system, and then clicking on the button
“Create” in the Actions View. This will also require user input for the name
of the new module and effort needed for its implementation (this could be
zero for a pre-existing component such as a commercial or open source
component, or a component to be reused in- house). After the module has
been created, it can be used as any other module.The change to the system
structure is made by clicking on the nodes and links in the input systems A
and B. The modules the systems are using can be set up in the Status View
for every node in any input system.

 259

Figure 1: Initial systems state.

260 Paper VI

Figure 2: Example of highlighted inconsistencies.

Activity E-II: Resolve Inconsistencies. As changes are introduced, the tool
will highlight inconsistencies between modules by painting the dependency
arrows orange (see Figure 2). In the model, two module instances from the
same system are consistent without further adaptation. Two modules from
different systems are consistent only if some measure has been taken to
ensure it, i.e., if either module have been adapted to work with the other. The
actual adaptations made could in practice be of many kinds: some wrapping
or bridging code as well as modifications of individual lines of code.
Another way to resolve an inconsistency is to describe adaptations to either
of the inconsistent modules, in order to make them match. This is done by
clicking on the incompatible link, and one of “Add …” buttons in the
Actions View. This will require the user to enter an estimated effort for
resolving this inconsistency (a number, in e.g. man-months), and a free text
comment how to solve it, such as “we will modify each call to methods x()
and y(), and must also introduce some new variables z and w, and do the
current v algorithm in a different way” (on some level of detail found
feasible). (As said, the tool does not do anything with the real systems
automatically, but in this sense serves as a notebook during rapid
explorations and discussions.) It can be noted that a module that will be
newly developed would be built to fit. Nevertheless there is an additional
complexity in building something to fit two systems simultaneously, which
is captured by this mechanism.

Figure 3: Two modules with same role.

 261

There is also a third possibility to resolve an inconsistency: to let two
modules for the same role live side by side, see Figure 3. Although allowing
the same thing to be done in different ways is clearly a violation of the
system’s conceptual integrity, it could be allowed during a transition period
(until the final, merged system is delivered) if the system’s correct behavior
can be asserted. For example, it might be allowed for some stateless
fundamental libraries, but not when it is fundamentally assumed that there is
only one single instance responsible for a certain functionality, e.g. for
managing central resources, such as thread creation and allocation, access
control to various hardware or software resources, security). The tool cannot
know whether it would be feasible in the real system, this is up to the users
to decide when and whether to use this possibility. The current version does
not model the potential need for communication and synchronization of two
modules doing same role.
Activity E-III: Branch Scenarios. As changes are made, the operations are
added to a scenario tree in the History View (see Figure 4). At any time, it is
possible to click any choice made earlier in the tree, and branch a new
scenario from that point. The leaf of each branch represents one possible
version of the system. When clicking on a node, the graphs are updated to
reflect the particular decisions leading to that node. Any change to the
systems (adaptations, exchanging modules, etc.) results in a new node being
created; unless the currently selected node is a leaf node, this means a new
branch is created. All data for adaptations entered are however shared
between scenarios; this means that the second time a particular inconsistency
is about to be resolved, the previous description and effort estimation will be
used. As information is accumulated, the exploration will be more and more
rapid.
Activity E-IV: Evaluate Scenarios. The exploration is a continuous
iteration between changes being made (activities E-II and E-III) and
evaluation of the systems. Apart from the information of the graphs
themselves, the Status View presents some additional information, see Figure
5. The branching mechanism thus allow the architects to try various ways of
resolving inconsistencies, undo some changes (but not loosing them) and
explore several alternatives in a semi-parallel fashion, abandon the least
promising branches and evaluate and refine others further. The total effort
for an alternative can be accessed by clicking the “History Analysis” button,
which is simply the sum of all individual adaptation efforts. It also becomes
possible to reason about efforts related to modifications that actually lead
towards the desired future system, efforts required only to make modules fit
only for the next delivery (and later discarded).

262 Paper VI

The tool’s advantage over using a whiteboard lies in the possibility to switch
back and forth among (temporary) decisions made during the exploration (by
means of the scenario tree), make some further changes (through simple
point-and-click operations), and constantly evaluate the resulting systems
(by viewing the graphs, the status view, and retrieve the total effort for the
scenario).
Finally, although not implemented yet, one would extract the free texts
associated with the scenario into a list of implementation activities.

2.3 Similar Structures?
The tool (and the model) assumes that the existing systems have identical
structures, i.e. the same set of module roles (e.g. one module instance each
for file handling, for physics X etc.) with the same dependencies between
them. This may seem a rather strong assumption, but there are three
motivations for this, based on our previous multiple case study [10]. First,
our previous observations strongly suggest that similar structures are a
prerequisite for merge to make sense in practice. Second, we also observed
that it is not so unlikely that systems in the same domain, built during the
same era, are indeed similar. And third, if the structures are not very similar,
it is often possible to find a higher level of abstraction where the systems are
similar.
With many structural differences, Merge is less likely to be practically and
economically feasible, and some other high-level integration strategy should
be chosen (i.e. Start from Scratch or Choose One). A common type of
difference, that should not pose large difficulties in practice, is if there is a
set of identical module roles and dependencies, and some additional modules
that are only extensions to this common architecture. (For example, in the
case we could imagine one of the systems to have a module modeling one
more physics model PW than the other.) However, architects need in reality
not be limited by the current version: a simple workaround solution is to
introduce virtual module instances, i.e. modules that do not exist in the real
system (which are of course not desired in the future system).

 263

Figure 4: The History View.

Figure 5: The Status View.

264 Paper VI

3. Future Research & Development
The tool is still in prototype stage and needs to be further developed. Neither
the method nor the tool has been validated in a real industrial case (although
their construction builds heavily on industrial experiences).
In reality there are numerous ways to make two components fit, for example
as an adapter mimicking some existing interface (which requires little or no
modifications of the existing code) or switches scattered through the source
code (as runtime mechanisms or compile-time switches). Such choices must
be considered by the architects: a high-performance application and/or a
resource constrained runtime environment might not permit the extra
overhead of runtime adapters, and many compile-time switches scattered
throughout the code makes it difficult to understand. The method in its
current version does not model these choices explicitly but has a very rough
representation: the users can select which of the two inconsistent modules
that should be adapted, and add a free text description and an effort
estimation.
Another type of extension would be to include several structural views of the
architecture, including some runtime view.
Yet another broad research direction is to extend the method and the tool to
not focus so much on structure as the software architecture field usually does
[2,17]. Structure is only one high-level measure of similarity between
systems. Existing data models, and the technological frameworks chosen (in
the sense “environment defining components”) are also important additional
issues to evaluate [10], and needs to be included in any merge discussions in
reality, and should be included in future extensions of the merge method
and the tool.

4. Acknowledgements
We would like to thank the interviewees and their organization for sharing
their experiences and allowing us to publish them. Thanks to Mathias
Alexandersson, Sebastien Bourgeois, Marko Buražin, Mladen Čikara, Lei
Liu, and Marko Pecić for implementing the tool. Also thanks to Laurens
Blankers, Jan Carlson, Ivica Crnkovic, and Stig Larsson for previous and
current research collaborations related to this paper.

 265

5. References
 [1] Eclipse.org home, URL: www.eclipse.org, 2006.
 [2] Bass L., Clements P., and Kazman R., Software Architecture in

Practice (2nd edition), ISBN 0-321-15495-9, Addison-Wesley, 2003.
 [3] Berzins V., “Software merge: semantics of combining changes to

programs”, In ACM Transactions on Programming Languages and
Systems (TOPLAS), volume 16, issue 6, pp. 1875-1903, 1994.

 [4] Britton C. and Bye P., IT Architectures and Middleware: Strategies
for Building Large, Integrated Systems (2nd edition), ISBN
0321246942, Pearson Education, 2004.

 [5] Clements P., Bachmann F., Bass L., Garlan D., Ivers J., Little R., Nord
R., and Stafford J., Documenting Software Architectures: Views and
Beyond, ISBN 0-201-70372-6, Addison-Wesley, 2002.

 [6] Cummins F. A., Enterprise Integration: An Architecture for Enterprise
Application and Systems Integration, ISBN 0471400106, John Wiley
& Sons, 2002.

 [7] Hofmeister C., Nord R., and Soni D., Applied Software Architecture,
ISBN 0-201-32571-3, Addison-Wesley, 2000.

 [8] Kruchten P., “The 4+1 View Model of Architecture”, In IEEE
Software, volume 12, issue 6, pp. 42-50, 1995.

 [9] Land R., Interviews on Software Systems Merge, MRTC report ISSN
1404-3041 ISRN MDH-MRTC-196/2006-1-SE, Mälardalen Real-
Time Research Centre, Mälardalen University, 2006.

[10] Land R. and Crnkovic I., “Software Systems In-House Integration:
Architecture, Process Practices and Strategy Selection”, In
Information & Software Technology, accepted for publication, 2006.

[11] Lehman M. M. and Ramil J. F., “Software Evolution and Software
Evolution Processes”, In Annals of Software Engineering, volume 14,
issue 1-4, pp. 275-309, 2002.

[12] Mens T., “A state-of-the-art survey on software merging”, In IEEE
Transactions on Software Engineering, volume 28, issue 5, pp. 449-
462, 2002.

[13] Meyers C. and Oberndorf P., Managing Software Acquisition: Open
Systems and COTS Products, ISBN 0201704544, Addison-Wesley,
2001.

266 Paper VI

[14] Parnas D. L., “Designing Software for Ease of Extension and

Contraction”, In IEEE Transaction on Software Engineering, volume
SE-5, issue 2, pp. 128-138, 1979.

[15] Parnas D. L., “Software Aging”, In Proceedings of The 16th
International Conference on Software Engineering, pp. 279-287, IEEE
Press, 1994.

[16] Perry D. E., “Laws and principles of evolution”, In Proceedings of
International Conference on Software Maintenance (ICSM), pp. 70-
70, IEEE, 2002.

[17] Perry D. E. and Wolf A. L., “Foundations for the study of software
architecture”, In ACM SIGSOFT Software Engineering Notes, volume
17, issue 4, pp. 40-52, 1992.

[18] Ruh W. A., Maginnis F. X., and Brown W. J., Enterprise Application
Integration, A Wiley Tech Brief, ISBN 0471376418, John Wiley &
Sons, 2000.

[19] Szyperski C., Component Software - Beyond Object-Oriented
Programming (2nd edition), ISBN 0-201-74572-0, Addison-Wesley,
2002.

[20] Wallnau K. C., Hissam S. A., and Seacord R. C., Building Systems
from Commercial Components, ISBN 0-201-70064-6, Addison-
Wesley, 2001.

[21] Yin R. K., Case Study Research : Design and Methods (3rd edition),
ISBN 0-7619-2553-8, Sage Publications, 2003.

Appendices

Appendix A: Questionnaire Form and Data for
Phase One

This appendix reprints the questionnaire forms and data for phase one. The
questionnaire for all participants is reprinted first, followed by additional
questions for managers only (on page 278). All references to the company
have been removed from the answers (replaced with an indication in
brackets, like “<system 1 name>”.

270 Appendix A

This questionnaire aims at understanding why the project executed during
October through December (henceforth “the project”) succeeded in making
at a decision while the first sets of meetings held earlier in 2002 (“the
meetings”) failed.
You should answer the questions by marking an “X” in the first column for
the alternative(s) you agree with. There is an empty row for you to write
your own alternatives in free text. All comments and clarifications are very
welcome!
In any publication of these results, including internally at <company name>,
you are guaranteed anonymity.
Thank you for your cooperation!
Rikard Land

1.
Which of the following meetings did you participate in? (Please mark zero
or more meetings with “X”.)
 Meeting(s) on: dates
 x Project phase 1 (users)
 x x X Project phase 1 (developers)
 X X x X Project phase 2
X X X Project phase 3
Comment:
• I listened to meeting summaries during phases 1 and 2 but was not a

direct participant (other than buying some lunches & dinners!)

2.
The project made an explicit separation of the activities so that users,
developers, and managers met separately. Compare this with the previous
meetings, where these “roles” met together. Considering only the separation
of people (and not the time spent) which of the following statements do you
agree with? (Please mark zero or more statements with “X”.)

 271

X X x X This made the users’ evaluation more

efficient and focused (phase 1).

X X x X This made the developers’ evaluation more
efficient and focused (phase 1)

X X x This made the developers’ design and
analysis discussions more efficient and
focused (phase 2)

X X X X This made the managers’ discussions more
efficient and focused (phase 3)

Comment:
• Please note that the groups were not entirely “separate” – the users &

developers met during Phase 1 and heard first hand the feedback and
recommendations.

3.
Which of the following statements would you agree with? (Please mark only
one statement with “X”.)
 X In the first sets of meetings, the

responsibilities were unclear, which was
one reason that we could not agree

 X x In the first sets of meetings, the
responsibilities were unclear, but this was
not significant enough to affect the
outcome

 In the first sets of meetings, the
responsibilities were clear

 X I did not participate

Comment:
• The overall project scope and commitment were not clear. Reasonable

technical judgement can not be made.
• The second set of meetings didn’t differ from the first set in the sense

that we agreed on everything. In the second set we left some questions

272 Appendix A

unanswered (Tcl/Java GUI etc.). What was good in the second meetings
was that we spent more time on the project plan.

• I thought we had agreement to use the <system 3 name> architecture and
Java for new user interfaces during the June meetings but that changed
when we re-grouped for the September meetings when some participants
wanted Tcl for all user interface development (and perhaps no <system 3
name> architecture since it might not work with Tcl). The mission and
responsibilities were clear – we just could not reach agreement on an
approach.

4.
In your opinion, how important is it that time had passed (6 months) from
the first attempts? (Please mark only one statement with “X”.)
 X x Another meeting similar to the first ones

had succeeded in making a decision, if held
in October/November

 X X X Another meeting similar to the first ones
had not succeeded in making a decision

Comment:
• Some decisions were made, but the “project” is still in the air.
• 6 months had not passed from the first attempts – the first set of

meetings took place in April, June and beginning of September. The user
& developer evaluations were initiated at the end of September, so there
was only about 3 weeks of delay, which had no impact on making the
decision in my opinion.

5.
In your opinion, how important was the stronger requirement from <senior
manager> to make a decision before the end of the year? (Please mark only
one statement with “X”.)
 A short meeting with the managers had

been enough to make a decision

X X X X x X The project was essential, although it was
costly

Comment:

 273

• The sooner the decision is made the better for the company.
• Although the decision to create common data (database) models is not

enough. (my personal opinion).

6.
The decision was quite costly, in terms of time spent by the people involved.
In your opinion, could any of the following (cheaper) decision processes
have succeeded in making a decision and gained support enough for it to
actually make it happen? (Please mark zero or more statements with “X”.)
Also describe the level of user involvement required.
 One single architect could have been

assigned the task of developing alternatives
and decide which to use (no separate
decision needed)

 One single architect could have made the
design, and one single manager could have
decided

 One single architect could have made the
design, and several managers could have
agreed on a decision

 X None of the above, because: We needed the
knowledge of the designers/users involved.
There are no designers/users that has
knowledge of all existing systems.

 x None of the above, because: A smaller set
of people would not have been aware of all
of the issues. Any decision they would have
made would still have been second
guessed.

X Other constellations: Given that
automation is a key contributor to our
future I think it was important to have all
of the impacted organizations involved so
that there is appropriate “buy-in” to the
recommendation.

274 Appendix A

 x None of the above, because: there was not

one single architect that knew enough
about all of the available systems

 X None of the above, because: the real issue
was not technical but cultural and you
needed time to listen to one another and
“buy-in” to a compromise solution

 Other constellations: <free text>

User(s) should be involved in the following way as a minimum:
I think the users were appropriately involved (during Phase 1).

Defining the requirements, testing the system

See above.

Comments:
• “One single architect” solution might be an feasible solution.

Integration and evolution are the key, not re-writing.
• The integration framework, and integration phases can be decided in

some of the early meetings.
• A manager from the high level (<senior manager> level) should make

the “go” decision 6 month ago.

7.
Which of the following statements do you agree with? (Please mark only one
statement with “X”.)
 X The architectural design solution decided

upon was the best
 X x x There was at least one architectural design

proposal (not necessarily the one
recommended in phase 2) that was better
than the one decided upon. (If you
answered “X” and you were part of phase
3, please indicate the reason you agreed in
the decision.)

 275

X The decision was not based on the “best”

architectural design solution but on a
solution that would minimize risk, leverage
already existing applications at the
different sites, and provide an affordable
path to an acceptable solution.

Comments:
• Don’t really understand the question. See comments at the bottom.
• The recommendation of Phase 2 was the best architectural design but not

practical to implement given the available resources
• Being technically the best does not mean that it was the best overall

route. There are many other equally important factors such as
organizational readiness to execute the strategy selected.

• There was no decision of language for the GUI. This decision impacts
how much <system 1 name> code can be reused.

8.
Considering the people involved, which of the following was the most
important difference between the first sets of meetings and the last project?
(Please mark only one statement with “X”.)
 The number of people was more important

than the combination of people

X X X X x X The combination of people was more
important than the number of people

Comments:
• The right group of people is always the starting point.
• In the second set of meetings, the users spend 2 week, but I really don’t

think they found out much new.
• Users were not involved in the first set of meetings and their input was

important on accepting multiple look/feel in the User Interfaces.

9.

276 Appendix A

How devoted to the software integration were you at the time of the project?
(Please mark zero or more statement with “X”.)
 X I did not prepare myself enough in advance

of the project phases I participated in

 X X I had wanted to spend more time on the
project

 X During the project, I had other more
important work to do

 I hope I will not be more involved

 X I gave it my best.

 X I hope I had more time to prepare.

Comment:
• I had almost zero time to prepare for the meeting. It is true for all the

<larger project name> meetings I attended. There was a lot of other
work going on at the time the meetings were held. I did’t find a shop
order to work on.

• There should be more resource dedication to this project.
• I’m not sure you realise how difficult it is to build consensus among

three different groups of people that have different experiences,
backgrounds, and objectives. Not every decision is based purely on the
technical aspects of the problem. The difference between a scientist and
an engineer is economics. Based on the tone of your questions you are
trying to be a scientist. You need to consider the economics of the
situation to develop a plan that can be implemented. Then you become
an engineer. I hope this helps you to understand what we have done.

• I devoted whatever time was needed for all the project sessions that I
participated in and made them a priority

10.
Please describe what you think the outcome of the integration effort will be
(for example, “according to the project plan discussed”, or “too late and too
expensive”, or “never”).
According to the project plan discussed
As I said above, a common data model in itself is not enough. I hope and

 277

believe that more will follow (common server architecture etc.).
Given history as our guide, some small accomplishment will be made but
the true integrated vision will not be achieved due to the lack of strategic
funding and priority. Another key factor is the ever-changing landscape of
executive leadership with accompanying changes in direction and emphasis.
I hope it will be according to the project plan discussed. It will probably
be later than projected however.
It is a big project. It is necessary. It is expensive.
It requires company management support to make it happen.
I still doubt the effort vs. gain of combining <domains> in the same tool.
too late and too expensive

11.
Please note any other comments or experiences that you would like to share.
From the software engineering point of view, <system 3 name> architect is a
better design any other systems we investigated. As a matter of fact, the
<system 3 name> team will make a Birds-of-a-Feather presentation at
<conference name> about the integration work we did in <system 3 name>.

The key of the project is integration, not re-write. <system 3 name> should
not replace the existing <system 1 name> for all. The whole system (the
New System, or expanded <system 3 name>) should be componentized, and
different legacy applications should be able to live within.
I think that the reason that we obtained consensus on a decision the second
time was because management insisted that we do so. By way of
clarification, the process used earlier in 2002 included 3 sets of meetings
which involved both manager & developers (no users) in April, June &
September (each lasted ~4 days).

278 Appendix A

Questions for managers only
This questionnaire aims at understanding why the project executed during
October through December (henceforth “the project”) succeeded in making
at a decision while the first sets of meetings held earlier in 2002 (“the
meetings”) failed.
You should answer the questions by marking an “X” in the first column for
the alternative(s) you agree with. There is an empty row for you to write
your own alternatives in free text. All comments and clarifications are very
welcome!
In any publication of these results, including internally at <company name>,
you are guaranteed anonymity.
Thank you for your cooperation!
Rikard Land

1.
Why did you choose the non-recommended solution? (Please mark zero or
more statement with “X”.)
 x It means a lower degree of commitment
 x I would have preferred the recommended solution, but had to

compromise
 The project plan the developers produced for the recommended

solution was not realistic
 The developers seemed to recommend the solution they did

because it was more “elegant” but no more useful
X x It would mean a higher risk to rewrite code in a new language (as

in the solution recommended by phase 2)
X It would mean a higher cost to rewrite code in a new language

(as in the solution recommended by phase 2)
 x
Comments:

 279

2.
Why do you think the other managers chose the non-recommended solution?
(Please mark zero or more statement with “X”.)
 x It means a lower degree of commitment
 Some of them would have preferred the recommended solution,

but they had to compromise
 They judged the project plan the developers produced for the

recommended solution to be unrealistic
 They thought the developers recommended the solution they did

because it was more “elegant” but no more useful
X They thought it would mean a higher risk to rewrite code in a

new language
X They thought it would mean a higher cost to rewrite code in a

new language
 X The level of commitment over time required to complete the plan

was not likely to be found within the organization
Comments:

3.
Managers only. What were the developers’ reasons, in your opinion, to
recommend the use of one single language (Java) on the server side, and one
single language (Java or Tcl) on the client side, instead of a multi-language
solution? (Please mark zero or more statement with “X”.)
X X To give the user interface a homogeneous look-and-feel
X X Because the same functionality would otherwise have to be

duplicated in several languages
X X Because that would simplify integration of components
X Because some of the languages and technologies used today are

very old-fashioned and this will give rise to problems in the
future

 Because some of the languages and technologies used today are
very old-fashioned and the solution would be less “elegant”

X X To simplify maintenance

280 Appendix A

X To simplify cooperation between Sweden and the US
 To easier attract and keep staff
 To enable the application to be run via the Internet
 Because Java is well suited for number-crunching
 X Because Java and Tcl are well suited for writing user interfaces
 The total number of lines of code would be considerably less

Comments:

4.
The solution recommended by phase 2 was said to use one single
architecture, and reflect one set of concepts and design decisions. Which of
the following statements do you agree with? (Please mark zero or more
statements with “X”.)
 This remark is irrelevant for a decision
 The decision must be based on quantified cost savings, not vague

remarks like this
X This was an important remark which I considered seriously
 x I sense from the choices above that you feel we made the wrong

decision. We considered this remark but in the end decisions
must be made based on financial terms and the likelihood of
completing the project. It was very likely that if we
recommended the very expensive solution suggested that we
would fail to get any financial support and the project never
even get started. Given that I think we made the right choice.

Comments:
• This is an important concept which would be much more readily

achievable if we were starting from “scratch” rather than having to
evolve from existing applications. However, I didn’t think the
organization would be willing to invest the funding necessary to realize
this goal in a short time period.

 281

5.
Why did you lower the estimated costs for the chosen solution, compared to
the developers’ estimations? (Please mark only one statement with “X”.)
 I do not know that we did
 X Some costs were associated with activities we can do without
 It just has to be cheaper

Comments:
• I believe the costs for rewriting the applications will be much higher

than the developers’ estimates.

6.
Why, in your opinion, was not the project design that succeeded used earlier
during 2002? (Please mark zero or more statement with “X”.)
 No one thought of it
 It was too expensive
 A meeting such as the ones that were held was believed to

succeed
 It was considered better to mix users, developers, and managers

in one meeting than separating them
 x I don’t understand what you are asking
Comments:
• Because we thought we could get group consensus quickly by getting all

of the right people together. In retrospect this was a fantasy.
• I don’t understand this question – which project design succeeded?

7.
From a psychological point of view, it might have been unfortunate to decide
to use a solution that the developers (who will have to implement it)
explicitly did not recommend. Which of the following statements do you
agree with? (Please mark zero or more statements with “X”.)

282 Appendix A

 I do not understand what why it should be unfortunate
 The developers’ opinions are not relevant – a company is not a

democracy
X Yes, this may be a source of conflicts, but the chosen solution

was so much better so it is worth this risk
 Yes, this may be a source of conflicts, but it was the only way

we could agree
 We did not think of this during the meeting in phase 3
 X The developers would be even more disappointed if the project

never gets started. See my comments above in #4
Comments:
• All of us must get behind and support the decisions of our management,

regardless of whether we agree with them. I would encourage the
developers to continue to raise concerns but also be open to alternative
solutions that are less than ideal.

8.
Have you changed the plans for your department to be able to perform the
integration (e.g. allocated staff and planned journeys for your employees)?
(Please mark only one statement with “X”.)
X x Yes
 No
 No, because it has not been needed – the previous plans already

incorporated this possibility

Comments:

9.
Do you believe the other managers have changed their plans? (Please mark
only one statement with “X”. If more than one answer is selected, please
clarify.)

 283

X X Yes
 No
 No, because it has not been needed – the previous plans already

incorporated this possibility

Comments:

284 Appendix A

Appendix B: Interview Questions for Phase
Three

This appendix reprints the interview questions used in phase three.

286 Appendix B

The present research is intended to investigate integration of software
systems. Of interest are integration of systems that have a significant
complexity, both in terms of functionality, size and internal structure, and
which have been released and used in practice. Our research question is:
what are feasible processes (such as when and how were different people
involved in the process) and technical solutions (for example, when is reuse
possible, and when is rewrite needed) to accomplish a successful
integration?
The working hypothesis is that both processes and technical solutions will
differ depending on many factors: the fundamental reasons to integrate, as
well as the domain of the software, the organizational context, and if there
are certain very strict requirements (as for safety-critical software). We aim
to identify such factors and their importance. In particular, we are interested
in the role of software architecture (that is, the systems’ overall structure)
during integration.
The questions below will be used rather informally during a
discussion/interview, and are to be used as a guide. Preferably, the
respondent has considered the questions in advance. It is not necessary that
all terms be understood. There may also be other highly relevant topics to
discuss.

1. Describe the technical history of the systems that were integrated:
e.g. age, number of versions, size (lines of code or other measure),
how was functionality extended, what technology changes were
made? What problems were experienced as the system grew?

2. Describe the organizational history of the systems. E.g. were they
developed by the same organization, by different departments within
the same organization, by different companies? Did ownership
change?

3. What were the main reasons to integrate? E.g. to increase
functionality, to gain business advantages, to decrease maintenance
costs? What made you realize that integration was desirable/
needed?

4. At the time of integration, to what extent was source code the
systems available, for use, for modifications, etc.? Who owned the
source code? What parts were e.g. developed in-house, developed by
contractor, open source, commercial software (complete systems or

 287

smaller components)?

5. Which were the stakeholders* of the previous systems and of the
new system? What were their main interests of the systems? Please
describe any conflicts.

6. Describe the decision process leading to the choice of how
integration? Was it done systematically? Were alternatives evaluated
or was there an obvious way of doing it? Who made the decision?
Which underlying information for making the decision was made
(for example, were some analysis of several possible alternatives
made)? Which factors were the most important for the decision
(organizational, market, expected time of integration, expected cost
of integration, development process, systems structures
(architectures), development tools, etc.)?

7. Describe the technical solutions of the integration. For example,

were binaries or source code wrapped? How much source code was
modified? Were interfaces (internal and/or external) modified? Were
any patterns or infrastructures (proprietary, new or inherited, or
commercial) used? What was the size of the resulting system?

8. Why were these technical solutions (previous question) chosen?
Examples could be to decrease complexity, decrease source code
size, to enable certain new functionality.

9. Did the integration proceed as expected? If it was it more
complicated than expected, how did it affect the project/product?
For example, was the project late or cost more than anticipated, or
was the product of less quality than expected? What were the
reasons? Were there difficulties in understanding the existing or the
resulting system, problems with techniques, problems in
communication with people, organizational issues, different
interests, etc.?

* Stakeholders = people with different roles and interests in the system, e.g. customers, users,

developers, architects, testers, maintainers, line managers, project managers, sales persons,
etc.

288 Appendix B

10. Did the resulting integrated system fulfill the expectations? Or was it
better than expected, or did not meet the expectations? Describe the
extent to which the technical solutions contributed to this. Also
describe how the process and people involved contributed – were the
right people involved at the right time, etc.?

11. What is the most important factor for a successful integration

according your experiences? What is the most common pitfall?

12. Have you changed the way you work as a result of the integration
efforts? For example, by consciously defining a product family
(product line), or some components that are reused in many
products?

Appendix C: Interview Questions for Phase
Four

This appendix reprints the interview questions used in phase four.

290 Appendix C

Structure
Describe the structure of the system. What components are there? What are
their roles? How are they connected; how is data and control transferred? (Is
there any documentation of this?)

Framework
How are components defined? Do you utilize e.g. any language or operating
system constructs? To what extent can modularity be enforced? To what
extent do you rely on conventions (e.g. different files/directories with
standardized names)?

Conceptual Integrity
For each of the following concepts X:

a) Error handling
b) Physics PX
c) Data structures
d) More?

Describe:
1. The X component
• Today and in the future:

• Functionality
• Interface

• How did you define the future component, in terms of the existing
POLCA/ANC X component? To what extent did you try to achieve some
similarity with today, and to what extent did you try to create something
as good as possible?

• What will it take to move from today’s component to the future X
component?
• How difficult will it be to modify the system to always use the new

X component?
• Did you assess this explicitly?

2. Any rules associated with X (which the whole system must follow):
• Today and in the future:

• What does X required from the rest of the system?
• What does X prohibit?
• What would happen if these rules are not followed? Would the run-

time behaviour be unpredictable/error prone, and/or would the
system becomes more difficult to maintain?

 291

• Are these rules documented? Are they known? Do you enforce these
rules in any way?

• How did you define the future rules, in terms of the existing
POLCA/ANC X rules? To what extent did you try to achieve some
similarity with today, and to what extent did you try to create something
as good as possible?

• In terms of rules, what will it take to move from today ’s system to the
future X?
• How difficult will it be to modify the system to always use the new

X?
• Did you assess this explicitly?

292 Appendix C

Appendix D: Questionnaire Form for Phase
Five

This appendix reprints the questionnaire. For questions 76-101, the
“importance” column is assigned the even question ID and “attention” the
odd number; e.g. for the statement “A small group…”, “importance” has ID
76 and “attention” 77.

294 Appendix D

This questionnaire is aimed at studying various aspects of the integration,
including how decisions are made, the technical nature of the systems and
the integration, and certain practices. Please answer to the best of your
knowledge. You do not need to provide any free-text comments, but you are
free to communicate anything with us – clarifications, comments on the
formulation of questions, or similar.
There are four main sections, labeled A-D, with a total of 101 questions. The
questionnaire is expected to take ca 20 minutes to fill. All answers will be
treated anonymously and confidentially.
As this questionnaire is distributed to projects in various stages of the
integration, we want to clarify that “existing systems” refer to the original
systems, that have been or are to be integrated. “Future system” is the system
resulting from the integration (it may already exist as well, if the integration
is completed.

First we ask you to fill some background information.
1 Project Name
2 My experience in software

development activities
 Years

3 My experience with any of the
existing systems

 Years

Please mark your role(s) in the current project with “X".
4 (Technical) architect []
5 Designer []
6 Implementer []
7 Tester []
8 Project leader []
9 Line manager []
10 Product

responsible/owner
[]

11 Other []

 295

Comments

296 Appendix D

Section A.
You will now be asked some questions concerning management, how
decision was reached, and how the existing systems will eventually be
integrated.
The following questions concern what, in your opinion, management's
vision is of your project, i.e. the high-level decision about how to integrate.
Please grade the statements below using the scale 1-5, where 1 means “I do
not agree at all” and 5 “I agree completely". NA means “cannot answer”.
12 The existing systems will continue to be maintained,

evolved and deployed completely separately.
1 2 3 4 5 NA

13 One of the existing systems is (or will be) evolved
into a common system.

1 2 3 4 5 NA

14 One or more systems has been (or will be) retired. 1 2 3 4 5 NA

15 All existing systems is (or will be) retired. 1 2 3 4 5 NA

16 A new generation of this type of systems is (or will
be) developed from scratch.

1 2 3 4 5 NA

17 Parts/components/modules of the future system are
(or will be) reused from more than one of the
existing systems.

1 2 3 4 5 NA

18 Reused parts/components/modules required (or will
require) only minor modifications

1 2 3 4 5 NA

19 A significant amount of the existing systems are (or
will be) reused in the future system

1 2 3 4 5 NA

20 The functionality of the existing systems are equal. 1 2 3 4 5 NA

21 The quality of the existing systems are equal. 1 2 3 4 5 NA

22 At least some software parts/components/modules is
(or will be) completely new

1 2 3 4 5 NA

23 Source code is (or will be) reused from one or more
of the existing systems.

1 2 3 4 5 NA

The following questions concern how, in your opinion, this vision was
reached.
Please grade the statements below using the scale 1-5, where 1 means “I do
not agree at all” and 5 “I agree completely". NA means “cannot answer”.

 297

The high-level decision about how to integrate…
24 …was based on technical considerations 1 2 3 4 5 NA

25 ...was based on considerations on time schedule 1 2 3 4 5 NA

26 …was based on considerations for existing users 1 2 3 4 5 NA

27 …was based on considerations concerning the
parallel maintenance and evolution of existing
systems

1 2 3 4 5 NA

28 …was based on available staff and skills 1 2 3 4 5 NA

29 ...was based on politics 1 2 3 4 5 NA

30 ...was made by technicians 1 2 3 4 5 NA

31 ...was made by management 1 2 3 4 5 NA

Now some questions about your personal opinion about what you think will
happen (or have happened) in the project, i.e. how the systems will actually
be integrated. This could be identical or different from management's
vision/decision.
Please grade the statements below using the scale 1-5, where 1 means “I do
not agree at all” and 5 “I agree completely". NA means “cannot answer”.
32 The existing systems will continue to be maintained,

evolved and deployed completely separately.
1 2 3 4 5 NA

33 One of the existing systems is (or will be) evolved
into a common system.

1 2 3 4 5 NA

34 One or more systems has been (or will be) retired. 1 2 3 4 5 NA

35 All existing systems is (or will be) retired. 1 2 3 4 5 NA

36 A new generation of this type of systems is (or will
be) developed from scratch.

1 2 3 4 5 NA

37 Parts/components/modules of the future system are
(or will be) reused from more than one of the
existing systems.

1 2 3 4 5 NA

38 Reused parts/components/modules required (or will
require) only minor modifications

1 2 3 4 5 NA

39 A significant amount of the existing systems are (or
will be) reused in the future system

1 2 3 4 5 NA

40 The functionality of the existing systems are equal. 1 2 3 4 5 NA

298 Appendix D

41 The quality of the existing systems are equal. 1 2 3 4 5 NA

42 At least some software parts/components/modules is
(or will be) completely new

1 2 3 4 5 NA

43 Source code is (or will be) reused from one or more
of the existing systems.

1 2 3 4 5 NA

Comments

 299

Section B. Reuse and retirement
Now follows a number of questions concerning retirement of the existing
system and backward compatibility of the final system. (All questions about
retiring systems refer to the implementations, not how the systems are
named or marketed.)
The following questions concern what, in your opinion, management's
vision is of your project.
Please grade the statements below using the scale 1-5, where 1 means “I do
not agree at all” and 5 “I agree completely". NA means “cannot answer”.
44 None of the existing systems will be retired. 1 2 3 4 5 NA

45 One or more existing system will be retired. 1 2 3 4 5 NA

46 There will be a replacement system that covers all
the lost functionality of retired system(s).

1 2 3 4 5 NA

This decision was based on the opinions of...
47 …customers 1 2 3 4 5 NA

48 …users 1 2 3 4 5 NA

49 …developers 1 2 3 4 5 NA

50 …marketing people 1 2 3 4 5 NA

51 …management 1 2 3 4 5 NA

Now some questions about your personal opinion about what you think will
happen (or have happened) in the project, i.e. how the systems will actually
be integrated. This could be identical or different from management's
vision/decision.
Please grade the statements below using the scale 1-5, where 1 means “I do
not agree at all” and 5 “I agree completely". NA means “cannot answer”.
52 None of the existing systems will be retired. 1 2 3 4 5 NA

53 One or more existing system will be retired. 1 2 3 4 5 NA

54 There will be a replacement system that covers all
the lost functionality of retired system(s).

1 2 3 4 5 NA

The following questions concern what, in the project, are (or were)
important aspects of backward compatibility.
Please grade the statements below using the scale 1-5, where 1 means “I do
not agree at all” and 5 “I agree completely". NA means “cannot answer”.

300 Appendix D

The future system needs to...
55 ...support the way users currently work. 1 2 3 4 5 NA

56 ...be backwards compatible with existing data. 1 2 3 4 5 NA

57 ...be backwards compatible with existing
surrounding tools.

1 2 3 4 5 NA

58 ...be backwards compatible with installations of the
existing systems.

1 2 3 4 5 NA

Comments

Section C. The existing systems
Now follows a number of questions concerning the existing systems.
Please grade the statements below according to how well, in your opinion,
they describe the existing systems in your project.
Use the scale 1-5, where 1 means “I do not agree at all” and 5 “I agree
completely". NA means “cannot answer”.
59 The software of the existing systems have the same

internal structure (architecture).
1 2 3 4 5 NA

60 The parts/components/modules exchange data in the
same ways in the existing systems.

1 2 3 4 5 NA

61 The existing systems interacts with the users in the
same way.

1 2 3 4 5 NA

62 The existing systems have similar look-and-feel of
the user interface.

1 2 3 4 5 NA

63 The existing systems contain software
parts/components/modules with similar
functionality.

1 2 3 4 5 NA

64 The hardware topology (networks, nodes) of the
systems is similar.

1 2 3 4 5 NA

65 The design of the existing systems is based on the
data model.

1 2 3 4 5 NA

 301

66 The data models in the existing systems are similar. 1 2 3 4 5 NA

67 The implementations of data handling in the existing
systems are similar.

1 2 3 4 5 NA

68 The existing systems are written in the same
programming language.

1 2 3 4 5 NA

69 Communication between components/modules/parts
in the existing systems is performed through certain
interfaces.

1 2 3 4 5 NA

70 The existing systems use some technology to clearly
encapsulate software components/modules/parts.

1 2 3 4 5 NA

71 The existing software use the same or similar
technologies.

1 2 3 4 5 NA

72 The existing systems implement some domain
standards.

1 2 3 4 5 NA

73 The existing systems implement the same domain
standards.

1 2 3 4 5 NA

74 The existing systems were initially built in the same
time period (e.g. decade).

1 2 3 4 5 NA

75 The existing systems have evolved from the same
system many years ago.

1 2 3 4 5 NA

302 Appendix D

Comments

Section D. Practices
Now follows a number of questions concerning specific practices.
For each statement below, please indicate the following: how important it
was (or would have been) for your project’s success, and how much
attention it was given in your project.
Please use the scale 1-5. For “importance” 1 means “not important at all”
and 5 means “essential for success. For “attention”, 1 means “no attention
was given” and 5 “very much attention was given”. The same grade on both
“importance” and “attention” means that with respect to importance,
enough attention was given but not too much. NA means “cannot answer”.
76 A small group of experts must be

assigned early to evaluate the
existing systems and describe
alternative high-level strategies for
the integration.

Importance
1 2 3 4 5 NA

Attention
1 2 3 4 5 NA

78 Experience of the existing systems
from many points of view must be
collected.

1 2 3 4 5 NA 1 2 3 4 5 NA

 303

80 The future system should be

described in terms of the existing
systems.

1 2 3 4 5 NA 1 2 3 4 5 NA

82 The future system must contain
more features than the existing
systems

1 2 3 4 5 NA 1 2 3 4 5 NA

84 Decisions should wait until there
is enough basis for making a
decision

1 2 3 4 5 NA 1 2 3 4 5 NA

86 It is more important that decisions
are made in a timely manner, even
if there is not enough basis for
making a decision

1 2 3 4 5 NA 1 2 3 4 5 NA

88 A strong project management is
needed

1 2 3 4 5 NA 1 2 3 4 5 NA

90 All stakeholders must be
committed to the integration

1 2 3 4 5 NA 1 2 3 4 5 NA

92 Management needs to show its
commitment by allocating enough
resources

1 2 3 4 5 NA 1 2 3 4 5 NA

94 The “grassroots” (i.e. the people
who will actually do the hard and
basic work) must be cooperative,
both with management and each
other

1 2 3 4 5 NA 1 2 3 4 5 NA

96 Formal agreements between sites
must be made and honored
(strictly obeyed)

1 2 3 4 5 NA 1 2 3 4 5 NA

98 A common development
environment is needed

1 2 3 4 5 NA 1 2 3 4 5 NA

100 There is a conflict between the
integration efforts and other
development efforts

1 2 3 4 5 NA 1 2 3 4 5 NA

304 Appendix D

Comments

Thank you for your participation! Your answers will be treated anonymously
and confidentially.

Appendix E: Questionnaire Data for Phase
Five

In this appendix, the complete questionnaire data is listed. (Respondent IDs
are assigned by the order in which they were received.)

Respondent
ID

Question ID

3 1 9 2 4 5 6 7 8

1 A B C E1 E2 F2 F4 G G
2 23 25 20 12 19 5 20 10 23
3 5 5 10 4 19 0 4 15
4 x x
5 x x x x
6 x x x x x
7 x x x
8 x x x x x x
9 x x x
10 x x x
11 x
12 2 2 1 1 3 2 3 4 5
13 5 4 5 1 2 5 4 4 3
14 3 5 5 5 4 5 4 2 5
15 1 1 5 2 1 1 1 5 1
16 2 4 3 4 1 3 1 5 5
17 1 2 4 4 4 4 5 2 4
18 1 3 3 1 2 1 3 2 4
19 1 1 4 3 4 4 4 2 4
20 3 3 4 1 2 3 3 3 4
21 3 1 5 1 2 2 3 3 1
22 5 5 5 4 4 5 5 5 5
23 1 1 3 1 5 4 5 2 1
24 3 4 4 4 4 2 3 3 5
25 1 1 2 1 2 4 1 4 1

306 Appendix E

Respondent
ID

Question ID

3 1 9 2 4 5 6 7 8

26 1 4 4 1 5 3 2 4 3
27 3 4 4 1 5 4 2 2
28 3 3 4 2 2 3 3 3 4
29 3 2 3 1 4 5 3 2 4
30 4 1 4 4 4 2 2 3 4
31 4 4 4 4 5 5 4 3 5
32 2 1 1 1 3 3 4 4 5
33 4 3 5 1 2 4 4 1
34 5 5 3 5 5 2 2 4 5
35 2 2 3 2 1 2 2 1
36 1 4 3 5 4 3 1 5 5
37 1 2 4 1 4 3 4 2 5
38 1 3 2 1 2 1 3 2 5
39 1 1 4 2 4 2 3 1 5
40 3 3 4 1 2 3 3 3 4
41 3 1 5 1 2 2 3 3 1
42 5 5 5 5 4 4 5 5 5
43 1 1 2 1 4 2 5 1 1
44 1 1 1 1 1 2 2 1
45 5 5 5 5 5 4 2 5 5
46 4 4 4 4 2 5 2 5 5
47 3 2 5 4 5 4 2 3 4
48 3 4 5 4 5 4 2 1 2
49 4 4 2 4 4 2 2 4 5
50 4 1 2 NA 1 3 1 5 4
51 4 4 5 4 1 4 2 5 4
52 1 1 1 1 1 4 2 2 1
53 5 5 5 4 5 2 3 5 5
54 4 4 5 4 1 4 1 5 5
55 4 3 5 3 4 3 4 2 5
56 1 5 4 1 3 2 4 2 3
57 4 4 4 1 4 4 3 2 4
58 3 4 3 1 2 2 4 2 2
59 1 2 NA 1 2 4 1 2 1
60 3 1 2 1 1 4 1 2 1
61 4 2 4 2 1 3 1 3 4
62 5 2 4 1 2 3 1 3 1

 307

Respondent
ID

Question ID

3 1 9 2 4 5 6 7 8

63 4 4 4 4 5 4 3 3 4
64 2 3 4 1 4 5 2 4 2
65 4 3 NA NA 4 4 2 NA 1
66 4 3 NA NA 4 4 1 2 1
67 2 3 2 4 4 1 2 2
68 1 2 4 1 5 3 1 3 3
69 5 5 NA 3 3 1 2 4
70 5 3 NA 3 3 1 2 1
71 3 2 2 2 5 4 1 4 2
72 4 3 NA NA 3 2 3
73 3 3 NA NA NA 1 2 1
74 3 3 2 3 5 NA 1 4 1
75 3 2 5 3 3 NA 5 5 1
76 4 5 5 5 5 5 4 4
77 3 5 5 5 3 2 NA 3
78 5 4 5 5 5 4 4 4 5
79 3 3 4 5 5 4 2 NA 3
80 4 3 4 1 3 2 2
81 3 3 4 1 NA 2 2
82 3 2 3 1 2 3 5 4 3
83 3 4 3 1 2 3 3 NA 4
84 3 4 5 5 4 5 3 5 2
85 3 4 4 5 3 2 2 2 1
86 4 3 4 5 4 4 2 4
87 2 3 4 5 3 3 NA 1
88 5 5 5 4 5 5 4 5
89 4 5 4 4 2 3 3 2
90 5 4 4 5 4 5 4
91 2 4 5 3 NA 2 NA
92 5 5 5 4 5 5 5 5
93 2 4 4 4 2 2 3 2
94 5 4 5 5 4 4 5 5 5
95 3 3 4 5 3 4 5 4
96 5 3 5 4 4 5 3 NA 3
97 1 3 4 4 2 2 1 NA 1
98 3 4 4 5 2 5 4 5 5
99 4 4 3 5 1 1 5 5

308 Appendix E

Respondent
ID

Question ID

3 1 9 2 4 5 6 7 8

100 4 4 5 NA 4 5 NA 1
101 4 4 3 NA NA NA 1

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

