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Abstract

Rule number reduction is important for fuzzy control of complex processes with high dimensionality. It is stated in the
paper that this issue can be treated e.ectively by means of learning premises with general structure. Since conditions of rules
are generalised by a genetic algorithm (GA) rather than enumerated according to every AND-connection of input fuzzy sets,
a parsimonious knowledge base with a reduced number of rules can be expected. On the other hand, to give a numerical
evaluation of possible con5icts among rules, a consistency index of the rule set is established. This index is integrated into
the 7tness function of the GA to search for a set of optimal rule premises yielding not only good control performance but
also little or no inconsistency in the fuzzy knowledge base. The advantage of the proposed method is demonstrated by the
case study of development of a compact fuzzy controller to balance an inverted pendulum in the laboratory. c© 2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Fuzzy controllers are knowledge-based systems
which provide a framework for formalising intuition
and experiences of human experts and operators
[17]. Based on Zadeh’s theory of fuzzy sets [28],
a typical fuzzy controller [6] maintains a rule base
of fuzzy rules and associated fuzzy sets for map-
ping real-numbered inputs to outputs. De7nition of a
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control rule usually involves speci7cation of the rule
antecedent and determination of the corresponding
consequence which is suggested as controller output
under the speci7ed premise. Rule premises are signif-
icant since they correspond to partitions of the input
domain and determine the structure of a knowledge
base.
A common practice in traditional approaches to

building rule bases is to 7rst use canonical AND-
connections of input fuzzy sets as rule conditions and
then to determine their consequent counterparts. In
this manner the size (rule number) of a generated
rule base is given by the expression

∏n
i=1 q[i], where

n is the number of controller inputs and q[i] is the
number of linguistic values de7ned for the ith input.
This presents no problems in cases of n being small,
but would result in a large quantity of rules when
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dealing with high-dimensional control problems. An
extremely high number of rules could undermine real-
time control performance in addition to causing huge
memory requirement in the implementation. Further-
more, a knowledge base with too many detailed rules
is not favourable for human users to check and under-
stand the content of it.
We believe that, for complex control problems

with many input variables, it is not realistic to ac-
count for all AND-combinations of input fuzzy sets
in constructing a rule base, as the number of such
combinations increases exponentially with the input
number. To reduce the size of the rule base, more
general premise structure than canonical AND-
connections is thus needed. On the other side, in-
troducing general premise structure may lead to the
problem of knowledge con5ict. It is diKcult to vali-
date the correct interactions among these general rules
to maintain a linguistic consistency of the knowledge
base [16].
This paper aims to establish general premises of

rules using a genetic algorithm (GA) for arriving at a
compact knowledge base. The point of departure is the
consideration that a control rule essentially gives the
description of a situation under which a special fuzzy
action should be performed. With this viewpoint, we
suggest searching in the input domain for appropri-
ate conditions for di.erent conclusions to build a rule
base. For instance, it can be explored which input
situations correspond to the “middle” output of the
controller. It is not necessary to enumerate all com-
binations of input linguistic terms in the knowledge
base. Other premise structure is often preferred to en-
able bigger coverage of the input domain by an indi-
vidual rule. Fig. 1 shows the overall structure of our
scheme for designing a fuzzy controller by means of
premise learning. The upper limits of the rule numbers
for di.erent conclusions are predetermined by human
users according to the problem at hand. These upper
limits can be considered as an estimation of the suf-
7cient amounts of rules to satisfy the control goal.
GA is utilised here as a learning mechanism to search
for optimal premises of such rules with 7xed conclu-
sions and to optimise fuzzy set membership functions
at the same time. It must be noted that, as a result,
the learned rule base will not necessarily have exactly
the same number of rules for an output fuzzy set as the
upper limit presumed by users. As will be explained
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Fig. 1. Overall structure of the design scheme for a fuzzy controller.

in Section 4, owing to possible invalid premises coded
in genetic strings, the actual rule set learned is likely
to be smaller than what is assumed beforehand. An
adaptation of the rule numbers for di.erent fuzzy con-
clusions is thus enabled in the sense that we do not
have to prescribe them accurately in advance.
On the other side, there will be contradictory

among rules with di.erent consequences if their con-
ditions have linguistic overlapping. It is critical for the
learning mechanism to identify and evaluate possi-
ble con5icts in a rule base to get to a solution with
good logical coherence. For this purpose, a numeri-
cal assessment named as “consistency index” of the
rule base is established. This index is integrated into
the 7tness function of the GA to search for a set of
optimal rule premises yielding not only good control
performance but also little or no inconsistency in the
fuzzy knowledge base.
As a case study, the proposed method was applied

to the problem of balancing an inverted pendulum
in the laboratory. In addition to its very satisfactory
control capability, our designed fuzzy controller has
a much smaller rule base compared with other re-
ported fuzzy controllers on similar (inverted pendu-
lum) plants. This demonstrates themerit of our method
to reduce the number of rules for developing compact
fuzzy control systems.
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2. Previous works of fuzzy controller design using
genetic algorithms

Applications of GAs to facilitate automatic genera-
tion of optimal fuzzy controllers have been studied by
many researchers since early 1990s. These previous
investigations can be summarised into the following
7ve categories:

(1) Optimising fuzzy set membership functions under
a set of fully de7ned fuzzy if–then rules, see the
works by Karr [12,13,14].

(2) Learning rule conclusions only, with 7xed an-
tecedents and membership functions set by hand,
see [4,21,25] as examples.

(3) Learning both rule conclusions and fuzzy set
membership functions but in stages, with a 7xed
set of rule antecedents determined by hand. This
means 7rst evolving good fuzzy rule conclusions
using 7xed membership functions and premises,
and then 7ne tuning membership functions un-
der 7xed good fuzzy rule sets. Examples of the
works in this class can be found in [15,26].

(4) Learning both fuzzy rule conclusions and fuzzy
set membership functions simultaneously, while
rule conditions are speci7ed by users in advance,
see examples from [7,10,18,19,22,24,27].

(5) Simultaneous evolvingmembership functions and
their relations, see [3,11].

A common feature of the works in the 7rst four cat-
egories is that the premise structure is 7xed in advance
and only membership functions and/or consequences
of rules are optimised by GA. In fact, they all take
into account all canonical AND-connections of input
fuzzy sets as rule conditions. As the number of rules
in such cases increases exponentially with the number
of input variables, these methods are not expected to
scale well to high-dimensional problems.
The approaches falling into the 7fth category aim at

detecting suitable membership functions on both sides
of a rule. Rules are represented in terms of centres and
widths of fuzzy set membership functions they relate.
That means, each rule Rk for an n-input, m-output
system is expressed as

Rk : (xc1k ; xw1k); · · · ; (xcnk ; xwnk)
⇒ (yc1k ; yw1k); · · · ; (ycmk ; ywmk):

The bracketed terms denote the centres and widths of
fuzzy set membership functions over the range of in-
put and output variables. The condition part of each
rule comprises one membership function for every in-
put variable and the conclusion part comprises one
membership function for each output variable. The
genome representing the whole rule base is a concate-
nated string of such fuzzy rules, allowing genetic op-
erators to work on both fuzzy rule set and membership
functions at the same time. This representation o.ers
powerful expressive power for the learning of rules as
well as the bene7t for creating a compact rule base
when scaling to multi-dimensional problems. Unfor-
tunately, such advantages are achieved at the cost of
using localised fuzzy sets, i.e., the membership func-
tions pertaining to individual rules rather than global
fuzzy sets used by all rules. Clearly, rules no longer
employ easily understood fuzzy sets such as “Big” or
“Small”, so that the rule set developed seems more
like a black box and linguistic interpretation of the
rules is diKcult, if not impossible.
This paper contributes a new alternative for the syn-

thesis of GA and fuzzy control systems. The proposed
method distinguishes itself from previous works in its
ability to optimise rule premises with general structure
such that a compact and comprehensible rule base can
be expected as the result of the genetic learning.

3. Multiple-term uni!ed fuzzy rules and
consistency evaluation

Suppose a fuzzy control systemwith X =(x1; x2; : : : ;
xn) as its inputs and y as its output. Each input xj (j=
1; : : : ; n) has q[j] linguistic terms denoted as A(j; 1);
A(j; 2); : : : ; A(j; q[j]): Vj is de7ned as a vector, the
elements of which are the fuzzy sets corresponding to
input xj, thus we can write: Vj =(A(j; 1); A(j; 2); : : : ;
A(j; q[j])). A universal rule in a knowledge base has
the form as

if [xp(1) = F1(Vp(1))] and [xp(2) = F2(Vp(2))]

and : : : and [xp(s) = Fs(Vp(s))] then y = B: (1)

Here B is a reference output fuzzy set for this rule.p(·)
is an integer functionmapping from {1; 2; : : : ; s (s6n)}
to {1; 2; : : : ; n} satisfying ∀x �=y; p(x) �=p(y): Fk (k =
1; : : : ; s) represents a logical connection among some



220 N. Xiong, L. Litz / Fuzzy Sets and Systems 132 (2002) 217–231

fuzzy sets in the vector Vp(k). If the premise includes
all input variables in it (e.g. s= n), we say that this
rule has a complete structure, otherwise its structure
is incomplete.
In principle, a rule base for the fuzzy controller can

contain arbitrary rules in the form of (1). In practice,
however, only some special forms of universal rules
are often used. This paper is concentrated on learn-
ing conditions of the so-called “multiple-term uni0ed
fuzzy rules”, whose de7nition is given below:

De!nition 1. The rule expressed in (1) is called a
multiple-term uni7ed fuzzy rule if the following con-
dition holds:

∀k ∈ {1; 2; : : : ; s}; ∃D(k) ⊂ {1; 2; : : : ; q[p(k)]}

such that Fk(Vp(k)) =
⋃
j∈D(k)

A(p(k); j): (2)

Multiple-term uni7ed fuzzy rules are based on
multiple-value fuzzy logic. An important character of
such rules is that an union operation of input fuzzy
sets is allowed to appear in their premises. If the rule
in (1) satis7es De7nition 1, it can be rewritten as

if


xp(1) = ⋃

j∈D(1)
A(p(1); j)




and


xp(2) = ⋃

j∈D(2)
A(p(2); j)


 and · · ·

and


xp(s) = ⋃

j∈D(s)
A(p(s); j)


 then y = B:

(3)

De!nition 2. The rule expressed in (1) is termed as
a single-term connected fuzzy rule if the following
condition holds:

∀k ∈ {1; 2; : : : ; s}; ∃jk ∈ {1; 2; : : : ; q[p(k)]}

such that Fk(Vp(k)) = A(p(k); jk): (4)

Single-term connected rules de7ned above contain
only one linguistic term for every included input

variable in their premises. They can be regarded as a
“degeneration” from the multiple-term uni7ed rules in
(3), if all the integer sets D(i) (i=1; : : : ; s) consist of
only one element.

De!nition 3. The rule expressed in (1) is an elemen-
tary fuzzy rule if the following conditions hold:

(1) s = n; (5)

(2) ∀k ∈ {1; 2; : : : ; n};∃jk ∈ {1; 2; : : : ; q[p(k)]}
such that Fk(Vp(k)) = A(p(k); jk): (6)

Clearly, elementary fuzzy rules are single-term con-
nected rules which have complete structure. Using
canonical AND-connections of linguistic terms as rule
premises, elementary fuzzy rules are especially suit-
able to describe strategies to control simple plants with
low input dimensions.

For fuzzy control of complex processes with high
input dimensions, general multiple-term uni7ed rules
are preferable, since they achieve bigger coverage of
input domain compared with elementary rules. A rule
with incomplete structure or containing OR connec-
tions of linguistic terms can take the place of a set of
related elementary rules, as illustrated in the following
two examples:

Example 1. If (x1=NZ or PZ) and (x2=NZ or
PZ) then U=Small. With the premise illustrated
in Fig. 2, the rule covers four elementary rules

Fig. 2. Rule premise in Example 1.
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Fig. 3. Rule premise in Example 2.

listed below:

(1) If (x1=NZ) and (x2=NZ) Then U=Small.
(2) If (x1=NZ) and (x2=PZ) Then U=Small.
(3) If (x1=PZ) and (x2=NZ) Then U=Small.
(4) If (x1=PZ) and (x2=PZ) Then U=Small.

Example 2. If (x2=Z) then U=Big. With the in-
completely structured premise shown in Fig. 3,
this rule covers the following group of elementary
rules:

(1) If (x1=N ) and (x2=Z) Then U=Big.
(2) If (x1=NZ) and (x2=Z) Then U=Big.
(3) If (x1=Z) and (x2=Z) Then U=Big.
(4) If (x1=PZ) and (x2=Z) Then U=Big.
(5) If (x1=P) and (x2=Z) Then U=Big.

However, there exists also a negative e.ect of us-
ing multiple-term uni7ed fuzzy rules in the sense that
consistency of the rule base is not so easily guaran-
teed as with using elementary rules. Linguistic over-
lapping between the premises of two rules could lead
to a con5ict between them, if the two rules suggest
distinct output fuzzy sets in their conclusions. In order
to give a numerical assessment of knowledge coher-
ence of the rule base, several de7nitions are introduced
below.

De!nition 4. The input pattern (IP) of a multiple-
term uni7ed fuzzy rule in (3) is the following set of

linguistic term connections:

IP = {A(1; m1) ∩ A(2; m2) ∩ · · · ∩ A(n; mn) |
m1 ∈ F(1); m2 ∈ F(2); : : : ; mn ∈ F(n)}; (7)

where F(i) are sets of integers de7ned as follows:

F(i) =

{
D(p−1(i)) if p−1(i) �= ∅;
{1; 2; : : : ; q[i]} in other cases

(i = 1; 2; : : : ; n): (8)

Actually, the input pattern de7ned for a general
rule is composed of premises of the elementary rules
which are covered by it. For example, the input pattern
of the rule in Example 1 is {NZ∧NZ; NZ∧PZ; PZ∧
NZ; PZ∧PZ}. Similarly, the rule in Example 2 has the
input pattern as {N ∧Z; NZ∧Z; Z∧Z; PZ∧Z; P∧Z}.

A con5ict occurs in the rule base if there exist two
rules which have overlapping input patterns but di.er-
ent linguistic consequences. We divide all the rules in
a rule base into several clusters according to rule con-
clusions such that rules in the same cluster suggest the
same linguistic output. The number of clusters in the
rule base is equal to the number of output fuzzy sets
de7ned. The formal description of the input pattern of
a cluster is given in De7nition 5.

De!nition 5. The input pattern of a cluster C is a
union of input patterns of the rules which belong to it:

IP(C) =
⋃
r∈C
IP(r): (9)

It is clear that there is no disagreement inside any
cluster. But between two di.erent clusters there may
exist con5ict if the intersection between their input
patterns is not empty. The size of this intersection set
re5ects the con5icting scale between two clusters.

De!nition 6. The con5icting scale (CS) between two
clusters C1 and C2 is the cardinality measure of the
intersection set between their input patterns:

CS(C1; C2) = ‖IP(C1) ∩ IP(C2)‖: (10)

De!nition 7. The con5icting amount (CA) in the
whole knowledge base is a sum of the con5icting
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scales between any two distinct clusters in it:

CA =
Nc−1∑
i=1

Nc∑
j=i+1

CS(Ci; Cj); (11)

where Nc represents the number of clusters in the rule
base.

Finally, we consider a numerical index to evaluate
the consistency of the rule base. This index is designed
to have its value to be in inverse proportion to the
con5icting amount. In the case of no con5ict existing,
the consistency index reaches its maximal value of
“1”. Otherwise it decreases linearly with the increment
of con5icting amount, until its minimal value “0” is
reached. The calculation of consistency index �c is
given in the following formula:

�c =

{
1− k CA if k CA ¡ 1;

0 if k CA¿ 1;
(12)

where k∈(0; 1] denotes the decreasing rate of �c. The
value of k should be determined in terms of particular
problems to be solved.
To illustrate the calculation of consistency measure

concretely, an example is given below:

Example 3.

r1: IF [x1 = (N or Z)] and [x2 = (N or P)]

THEN y = Z;

r2: IF [x1 = (N or Z)] THEN y = N;

r3: IF [x2 = N ] THEN y = Z;

r4: IF [x1 = P] and [x2 = Z] THEN y = P;

r5: IF [x1 = (Z or P)] and [x2 = (Z or P)]

THEN y = P:

Consider a system with x1; x2 as its inputs and y as
its output. Every input/output variable is characterised
by three linguistic terms: negative(N ); zero(Z) and
positive(P). The knowledge base for the system con-
tains the above 7ve rules. The consistency index of it
is derived as follows:

(1) The input patterns of the individual rules are con-
structed:

IP(r1) = {N ∧ N; N ∧ P; Z ∧ N; Z ∧ P};

IP(r2) = {N ∧ N; N ∧ Z; N ∧ P; Z ∧ N;
Z ∧ Z; Z ∧ P};

IP(r3) = {N ∧ N; Z ∧ N; P ∧ N};
IP(r4) = {P ∧ Z};
IP(r5) = {Z ∧ Z; Z ∧ P; P ∧ Z; P ∧ P}:

(2) According to the suggested conclusions, the rules
are divided into three clusters:

C1 = {r1; r3}; C2 = {r2}; C3 = {r4; r5}:
(3) The input patterns of the clusters are obtained

through union operation:

IP(C1) = IP(r1) ∪ IP(r3)
= {N ∧ N; N ∧ P; Z ∧ N; Z ∧ P; P ∧ N};

IP(C2) = IP(r2)

= {N ∧ N; N ∧ Z; N ∧ P; Z ∧ N; Z ∧ Z;

Z ∧ P};
IP(C3) = IP(r4) ∪ IP(r5)

= {P ∧ Z; Z ∧ Z; Z ∧ P; P ∧ P}:
(4) The con5icting scales between clusters are deter-

mined as follows:

IP(C1) ∩ IP(C2) = {N ∧ N; N ∧ P;
Z ∧ N; Z ∧ P};

CS(C1; C2) = ‖IP(C1) ∩ IP(C2)‖ = 4;

IP(C1) ∩ IP(C3) = {Z ∧ P};
CS(C1; C3) = ‖IP(C1) ∩ IP(C3)‖ = 1;

IP(C2) ∩ IP(C3) = {Z ∧ Z; Z ∧ P};
CS(C2; C3) = ‖IP(C2) ∩ IP(C3)‖ = 2:

(5) Compute the con5icting amount and consistency
index of the rule base:

CA=CS(C1; C2) + CS(C1; C3)

+CS(C2; C3) = 7;

Set k = 0:08, then �c = 1− 0:08× 7 = 0:44.
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4. GA-based premise learning for fuzzy controller
design

4.1. The basic introduction of genetic algorithms

GAs [2,5,8,9,20] are stochastic optimisation algo-
rithms that emulate the mechanics of natural evolution.
Based on probabilistic decisions, they exploit historic
information to guide the search for new points in the
problem space with expected improved performance.
GAs are di.erent from other traditional searching al-
gorithms in the following aspects:

(1) GAs evaluate many points in the search space
simultaneously, as opposed to a single point, thus
reducing the chance of converging to the local
optimum.

(2) GAs use only objective functions, therefore they
do not require that the search space be di.eren-
tiable or continuous.

(3) The genetic search is guided by probabilistic
rules, rather than deterministic rules.

Essentially, a GA is an iterative procedure main-
taining a constant population size. Any individual
in the population encodes a possible solution to the
considered problem into a string analogous to a chro-
mosome in nature. At each iteration step new strings
are created by applying genetic operators on selected
parents, and subsequently some of the old weak
strings are replaced by new strong ones. In this man-
ner, the performance of the population will be grad-
ually improved with proceedings of the evolutionary
process.
We intend to employ a GA to learn premises of

rules together with fuzzy set membership functions
at the same time to acquire an optimal fuzzy con-
troller. For this purpose, appropriate coding scheme,
genetic operators and 7tness function have to be
de7ned.

4.2. Binary coding of rule premises

From De7nition 1, we can see that the premise of
a multiple-term uni7ed fuzzy rule is characterised by
sets D(i)⊂{1; 2; : : : ; q[p(i)]}. This fact suggests that
a binary code be a suitable scheme for representing
premises of such rules, as inclusion or exclusion of

an integer in the sets D(i) can be declared binary. For
input variable xj (j=1; 2; : : : ; n) with q[j] linguistic
terms, a segment consisting of q[j] binary bits is
required to encode the conditional composition for
this variable. Every bit of the segment corresponds
to a linguistic term with bit “1” for presence and bit
“0” for absence of its fuzzy set in forming the condi-
tion. For example, assume that xj has three linguistic
terms {low;middle; high}, the segments “010” and
“100” correspond to the conditions “xj =middle” and
“xj = low” respectively. Similarly, the condition with
OR-operation “xj =middle or high” is represented by
the segment “011”. All-one segment “111” is adopted
in this paper to represent the wildcard of “do not
care”, meaning that the corresponding input variable
is not considered in the rule premise. By composing
the binary segments for individual inputs, the whole
premise of a rule can be encoded into the group
P=(S(x1); S(x2); : : : ; S(xn)), where S(xj) denotes
the segment of the condition description for input
variable xj.

Example 4. Assume four input variables x1; x2; x3
and x4 with xj = {low;middle; high} (j=1; : : : ; 4).
The rule premise: (x1 = low or high) and (x3 =
middle) and (x4 =middle or high) corresponds to the
following binary coding:

S(x1) = 101; S(x2) = 111; S(x3) = 010;

S(x4) = 011;

P = [S(x1); S(x2); S(x3); S(x4)]

= [101 111 010 011]:

It is worth noting that the following two cases lead
to an invalid rule premise encoded:

(1) All the bits in the group are equal to one, mean-
ing that all input variables are neglected in the
premise.

(2) The group contains an all-zero segment. Its cor-
responding input variable thus takes no linguistic
term in the premise, resulting in an empty fuzzy
set for the condition of that input.

Rules with invalid premises are meaningless, play
no role in the fuzzy reasoning. Therefore, they should
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be removed from the knowledge base. This also pro-
vides the 5exibility for the learning algorithm to adjust
the size of the knowledge base.
Further, the coding of premise structure of a rule

base is realised through merging binary groups of all
individual rule premises in an head-to-tail manner. Let
nr be the maximal number of rules allowed to appear
in the rule base (derived from the sum of upper limits
of the rule numbers for individual output fuzzy sets),
the binary code (CB) for rule premises as a whole is
written as

CB = {P(1); P(2); : : : ; P(nr)}; (13)

where P(i) (i=1; 2; : : : ; nr) indicates the binary group
for the premise of the ith rule. In cases of no in-
valid premises encoded, the corresponding rule base
includes exactly nr valid rules in it. Otherwise the size
of the rule base can be reduced according to invalid
premises detected in (13). For this reason, we claim
that an adjustment of the size of the rule set is made
possible within the limitation of prescribed maximal
rule numbers for di.erent rule conclusions.

4.3. Integer coding of membership functions of
fuzzy sets

Triangular- and trapezoid-formed fuzzy sets are
adopted in this paper. We impose some constraints
on their membership functions to ensure that the sum
of membership values for every variable is always
equal to one, then certain parameters corresponding
to endpoints (also peaks) of membership functions
need to be tuned by GA. These parameters are criti-
cal for fuzzy partition of input/output variables, since
they determine shapes and locations of fuzzy set
membership functions.
Let the parameter for an endpoint be mapped by an

integer N in the interval {0; 1; : : : ; Nmax}, the relation-
ship between the parameter value V and the integer N
is

V = Vmin +
N
Nmax

(Vmax − Vmin); (14)

where Vmin and Vmax are two extreme limits of the end-
point under consideration. For fuzzy sets of a variable,
there are usually several important endpoints which
determine the distribution of their membership func-
tions, and each of the endpoints can be quantised by

K
0

%
100

15 25 45 70

1.0

Fig. 4. Six fuzzy sets for a variable.

an integer. The composition of such integers results
in an integer-vector depicting fuzzy partition of that
variable. For instance, consider the six fuzzy sets for
a variable in Fig. 4. The outline of the membership
functions of these six fuzzy sets are prescribed to sat-
isfy the constraint mentioned above. Exact de7nition
of membership functions is thus transformed to spec-
i7cation of positions of the four endpoints marked as
circles in Fig. 4. If we quantise possible ranges of the
positions from 0 to 100, the six fuzzy sets can be char-
acterised by the integer-vector: M =(15; 25; 45; 70).
The elements in the vector M are ordered from small
to big with correspondence to endpoints from left to
right.
Further, the integer-vectors for membership func-

tions of all individual variables are merged together
to produce an integer-code to represent infor-
mation of fuzzy sets as a whole. Suppose there
are nv input/output variables in the system and
M (i) (i=1; 2; : : : ; nv) is the integer-vector for mem-
bership functions of the ith variable, the integer-code
(CI) for the fuzzy sets of the whole control system is
given as

CI = [M (1); M (2); : : : ; M (nv)]: (15)

4.4. Hybrid coding of a fuzzy controller

Because of the inherent relationship between fuzzy
control rules and membership functions, both parts of
the fuzzy controller should preferably be optimised
simultaneously. For this purpose, a hybrid string con-
sisting of a binary code in (13) and an integer-code in
(15) as its two substrings is suggested, as illustrated
in Fig. 5. The substring in the left is the binary code
for premise structure of the rule base. nr denotes the
upper limit of the total number of rules in the rule
base and P(i) (i=1; : : : ; nr) is the binary group corre-
sponding to the premise of the ith rule. The substring
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P(1) M(1) M(2)P(2) P(nr) ........

HS(1) HS(2) ...... HS(L)

Rule Premises Fuzzy Sets Parameters

Fuzzy Controller
Description

M(nv)

Population

Fig. 5. A hybrid string in the population.

in the right is the integer-code representing informa-
tion of fuzzy sets.M (1); M (2); : : : ; M (nv) indicate the
integer-vectors for membership functions correspond-
ing to variables 1; 2; : : : ; nv respectively. nv is the total
number of input/output variables in the control sys-
tem. Such a hybrid string forms an individual in the
population. Each individual HS(i) in the population is
associated with a possible speci7cation of the fuzzy
controller to solve the problem. Through evolution-
ary process based on genetic operators, the quality of
hybrid strings in the population can be gradually im-
proved.

4.5. Fitness evaluation

Individual evaluation is a necessary step for the GA
to search for optimal fuzzy controllers. To enable such
an evaluation, every hybrid string of the population
must be decoded into a fuzzy controller description,
deleting rules with invalid premises at the same time.
The GA searches in the problem space for solutions
that satisfy two requirements: (1) the encoded fuzzy
controller has good control performance; and (2) the
rule base for the fuzzy controller has no or little in-
consistency in it. The above two criteria should be
combined in some manner to evaluate individuals of
the population. Generally, the 7tness function of an
individual HS can be written as

Fit(HS) = com(fP(HS); �c(HS)): (16)

Here fP is a numerical assessment of control perfor-
mance. The de7nition of fP is problem dependent. �c
is the consistency index described in Section 3. The

values fP(HS) and �c(HS) are delivered to a mathe-
matical expression com to obtain the 7tness value of
the individual HS.

4.6. Evolutionary process for fuzzy controller design

Individual strings are selected randomly to repro-
duce themselves based on the principle of “survive
of the 7ttest”. Each member in population is given a
probability proportional to its 7tness value for being
selected as parent. The selected parents then undergo
the genetic operators to produce their o.spring. Since
strong members in the population have more chances
to reproduce themselves, while weak members have
less chances and they become extinct with the time,
the evolutionary process is made towards producing
more 7t members and eliminating less 7t ones. Two
important genetic operators are crossover and muta-
tion.
Three-point crossover: By the operation of cross-

over, parent strings (old fuzzy controllers) mix and
exchange their attributes through a random process,
so that o.spring (new fuzzy controllers) with even
higher 7tness than current individuals will be gener-
ated. Considering discrete premise structure and es-
sentially continuous parameters of fuzzy sets, the two
substrings in the chromosome encode information of
di.erent nature. It is preferable that the attributes in
both substrings be mixed and exchanged separately.
Here a three-point crossover is used. One breakpoint
of this operation is 7xed to be the splitting point be-
tween both substrings, and the other two breakpoints
can be randomly selected within the two substrings,
respectively. At breakpoints the parents bits are alter-
natively passed on to the o.spring. This means that
o.spring get bits from one of the parents until a break-
point is encountered, at which they switch and take
bits from the other parent.

Example 5. Consider two strings in the following:

X1 = (b11; b
2
1; b

3
1; b

4
1; b

5
1; b

6
1; b

7
1; b

8
1; b

9
1; b

10
1 ; b

11
1 ; b

12
1 |

c11; c
2
1; c

3
1; c

4
1; c

5
1; c

6
1);

X2 = (b12; b
2
2; b

3
2; b

4
2; b

5
2; b

6
2; b

7
2; b

8
2; b

9
2; b

10
2 ; b

11
2 ; b

12
2 |

c12; c
2
2; c

3
2; c

4
2; c

5
2; c

6
2):
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Both X1 and X2 consist of two substrings (b1i ; b
2
i ; : : : ;

b12i ); (c1i ; c
2
i ; · · · ; c6i ) (i=1; 2) representing rule premi-

ses and parameters of fuzzy sets, respectively. The po-
sition between b12i and c1i is the splitting point between
two substrings. Selecting the other two breakpoints for
the crossover operator as the position between b5i ; b

6
i

and the position between c4i ; c
5
i , we obtain the children

as follows:

Y1 = (b11; b
2
1; b

3
1; b

4
1; b

5
1; b

6
2; b

7
2; b

8
2; b

9
2; b

10
2 ; b

11
2 ; b

12
2 |

c11; c
2
1; c

3
1; c

4
1; c

5
2; c

6
2);

Y2 = (b12; b
2
2; b

3
2; b

4
2; b

5
2; b

6
1; b

7
1; b

8
1; b

9
1; b

10
1 ; b

11
1 ; b

12
1 |

c12; c
2
2; c

3
2; c

4
2; c

5
1; c

6
1):

Clearly this three-point crossover used here is
equivalent to two one-point crossovers operating on
both substrings separately.
Mutation: Mutation is a random alteration of a bit

in a string so as to increase the variability of popula-
tion. Because of the distinct substrings used, di.erent
mutation schemes are needed.
(1) Since the parameters of membership functions

are essentially continuous, a small mutation with high
probability is more meaningful. Therefore, it is so de-
signed that each bit in the substrings for membership
functions undergo a disturbance. The magnitude of
this disturbance is determined by a Gaussian distribu-
tion function.
(2) For the binary substring representing rule

premises, mutation is simply to inverse a bit, replace
“1” with “0” and vice versa. Every bit in this sub-
string undergoes a mutation with the probability of
about 0.033.
At last, we summarise the GA for fuzzy controller

design as follows:
Step 1: For running GA, set the parameters such

as maximal generation number, population size,
crossover and mutation rates, etc. Set the parameters
Vmax and Vmin for integer coding in (14).
Step 2: Generate initial population Pop(0) com-

posed of randomly generated hybrid strings and eval-
uate their 7tness values with (16).
Step 3: Select parents from current population

Pop(t) according to probability distribution based on
7tness values of individuals.
Step 4: Apply genetic operators on the selected par-

ents to produce a set of o.spring.

Step 5: Evaluate the 7tness values of the o.spring
with (16).
Step 6: Choose the best L individuals from the pop-

ulation Pop(t) and the o.spring to form the next gen-
eration Pop(t + 1). (L is the population size.)
Step 7: Terminate the search procedure if a satisfac-

tory fuzzy controller is found or the maximal number
of generations is reached. Otherwise go to Step 3.

5. A case study and results

5.1. Basic description of the plant

As a case study the proposed method was applied
to the problem of balancing an inverted pendulum in
the laboratory. The constitution of the pendulum sys-
tem is depicted Fig. 6, where a pole is hinged to a
motor-driven cart which moves on a rail to its right
and left. The pole has only one degree of freedom to
rotate about the hinge point. The model of the inverted
pendulum is described by the following di.erential
equations [1]:

d2x
dt2

=
1

1 + [P2=(M)− P2)] sin2 *

×
[
)
N 2
01
Ku− Fr)

N 2
01

dx
dt

− P
2g
N 2
01

sin * cos *

+
PC
N 2
01

d*
dt

cos *+
P)
N 2
01

(
d*
dt

)2

sin *

]
; (17)

d2*
dt2

=
1

1 + [P2=(M)− P2)] sin2 *

×
[
PgM
N 2
01

sin *− CM
N 2
01

d*
dt

− P
N 2
01
Ku cos *

+
FrP
N 2
01

dx
dt

cos *

− P
2

N 2
01

(
d*
dt

)2

sin * cos *

]
: (18)

Here x and * are the cart’s displacement and the pole’s
angular rotation, respectively. u denotes the voltage
of the driving motor which produces a force on the
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u
x, v, f

α 

Fig. 6. The constitution of the pendulum system.

Table 1
Parameters of the inverted pendulum system

Parameter Value Unit

K 2.6 N/V
m0 3.2 kg
m1 0.329 kg
M =m0 + m1 3.529 kg
LS 0.448 m
) 0.0743 kg m2

P=m1LS 0.1474 kg m
N 2
01 =)M − P2 0.2405 kg2 m2

Fr 6.2 kg/s
C 0.009 kg m2=s

cart with a proportional magnitude to the value of u.
The parameters of the considered pendulum system
is listed in Table 1. It should be pointed out that this
model is only an approximate description of the dy-
namics of the system. There are some factors such
as the deadlock of the motor, non-uniformity of the
friction and realistic noises which are not integrated
into the di.erential equations. Later we will show that,
in spite of the incompleteness and imprecision of the
available model, a satisfactory fuzzy controller can be
obtained with our method.

5.2. Fuzzy controller design based on GA

The objective is to control the driving forces of
the motor so that the cart is positioned at the cen-
tre of the 7nite track while simultaneously balanc-

ing the pole hinged on the cart’s top. The fuzzy con-
troller for this purpose takes x; dx=dt; *, and d*=dt as
its input variables. The output of the controller is the
voltage of the driving motor. Each of the inputs has
three triangular or trapezoid fuzzy sets (negative, zero
and positive), and 7ve triangular or trapezoid fuzzy
sets (NB; NS; Z; PS; PB) are used to partition the out-
put space. The membership functions of the input and
output fuzzy sets are depicted in Figs. 7 and 8, respec-
tively. They are symmetric such that there are only six
parameters to be tuned.
Based on the mathematical model of the plant, GA

can be used to learn the fuzzy controller to balance the
corresponding pendulum system. Failure is de7ned to
occur when the angle * exceeds [−12◦; 12◦] or the po-
sition x exceeds [−0:4 m; 0:4 m]. We want not only
to maximise survival time but also to minimise the
discrepancy between the actual state (x; *) and the
desired state (x=0; *=0) of the pendulum system.
For evaluating the control behaviour, a set of di.er-
ent initial conditions should be introduced to cover
a wide range of input space. The assessment fP(HS)
∈ [0; 1] about the control performance is de7ned as
follows:

fP(HS) =
1
13

{
case 13∑
case 1

[sn(1− errn)]
}
; (19)

where

sn =
s
smax

; errn =
1

(2s)

s∑
i=1

( |xi|
xmax

+
|*i|
*max

)
:
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Fig. 7. Fuzzy sets for input variables.

Fig. 8. Fuzzy sets for the output variable.

Here s is the number of sampling periods in the sur-
vival time of a trial, sn and errn are normalised survival
time and normalised error, respectively. The total 7t-
ness value is the product of the control performance
assessment de7ned in (19) and the consistency index
of the rule base, thus we write

Fit(HS) = fP(HS)× �c(HS) (20)

The upper limits of the numbers of rules for fuzzy
actions NB; NS; Z; PS and PB are set in advance to be
5; 10; 4; 10 and 5, respectively, meaning that totally
34 rules are supposed to be suKcient to achieve a
desirable control performance. GA was used to learn
premise structure of such possible rules and six param-
eters of the membership functions simultaneously by
maximising the 7tness function in (20). As a result of
the genetic search, 22 rule premises were identi7ed as
invalid, therefore the rule base learned contains only
12 rules in it. Moreover, there is no linguistic con5ict
among the 12 rules in the knowledge base.
From this example, we clearly see that the exact

rule number was not determined by hand in advance.
What a human user needed to do is only a guess about
the suKcient rule amounts for di.erent conclusions.
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Fig. 9. Fitness values in generations.

GA can adapt the number of rules automatically with
the possibility of obtaining a compact knowledge base
whose size is much smaller than the speci7ed upper
limit.
Fig. 9 illustrates the evolution of the population dur-

ing the running of the GA. The upper and lower curves
correspond to the maximal and minimal 7tness values,
respectively, in each generation. In the experiments,
the population size was selected as 100, mutation rate
as 0.033, and the probability of crossover as 0.867.

5.3. Simulation results

Simulation tests reveal that the learned fuzzy con-
troller not only successfully balances the pendulum
of the exact model but also does well under some
perturbations on the controlled system. As an exam-
ple, we increase now the mass of the pole from 0.329
to 0:5 kg and the pole length form 0.448 to 0:57 m.
Fig. 10 illustrates the controlled cart positions of the
original and disturbed plants under the initial con-
dition (x=0:16 m; x′ =0:05 m=s; *=6◦; *′ =7◦=s),
which is not included in the 7tness function of the GA.
Supposing the same initial state, the controlled pole
angles for the original and disturbed plants are de-
picted in Fig. 11. From Figs. 10 and 11, it is easy to
identify that the system changes stated above have
only slight in5uences on control performance of the
learned fuzzy controller.
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Fig. 10. The cart positions in the simulation.
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Fig. 11. The pole angles in the simulation.

5.4. Experimental results

The fuzzy controller learned also functions very
well in real-time to balance the practical pendu-
lum system in the laboratory, as shown in Fig. 12.
The fuzzy control algorithm is implemented with a
C-program running on PC. The available sensors pro-
vide information about position/velocity of the cart
as well as angle of the pole. The angular velocity
is derived through di.erentiation between two suc-
cessive sampling instants. The sampling time of the
control system is 30 ms. Controller’s performance
on the practical plant is depicted in Figs. 13 and 14,
showing controlled cart positions and pole angles,
respectively.

Fig. 12. The real pendulum system.
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Fig. 13. The cart positions in the real operation.
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Fig. 14. The pole angles in the real operation.



230 N. Xiong, L. Litz / Fuzzy Sets and Systems 132 (2002) 217–231

5.5. Comparison with related works

GA-based fuzzy control for balancing an inverted
pendulum was addressed by Varsek [26] and Karr [12]
in the literature. They also used three linguistic terms
to characterise each of the four input variables. Karr
[12] applied a GA to adapt fuzzy membership func-
tions for a 7xed rule set. Varsek [26] employed GAs
to derive control rules and tune parameters of mem-
bership functions in separate stages. A common fea-
ture of both works is that 34 = 81 rules were required
to enumerate every AND-combination of input fuzzy
sets in the rule base. Our work presented here out-
smarts those of Karr [12] and Varsek [26] in two as-
pects. First, the knowledge base learned in this paper
has a much smaller size with only 12 rules, rather than
81 rules. The reason for this is that general premise
structure of rules was allowed in our design procedure.
Secondly, fuzzy rules as well as membership func-
tions of our controller were optimised simultaneously.
In addition, this paper presents more convincing suc-
cess on a practical pendulum system, whereas Karr
[12] and Varsek [26] only gave simulation results on
simple plant models.

6. Conclusions

This paper proposes a new approach to fuzzy con-
troller design by means of premise learning. It has the
following important features:

(1) The rule premises are generalised via a GA rather
than enumerated in terms of every canonical
AND-connections of input fuzzy sets.

(2) A parsimonious rule base is made possible due
to: (a) selection of important regions of the
input domain to be covered; (b) general rule
premises (multiple-value fuzzy logic and/or
incomplete structure) allowed in the coding
scheme.

(3) Linguistic con5icts in the rule base can be re-
moved by incorporating the consistency index
into the 7tness function of the GA.

(4) A variable size of the rule base is possible in the
sense that we do not have to specify the exact
rule numbers for individual conclusions. What is
needed is only a “guess” about how many rules

appear suKcient to solve the problem under con-
sideration.

(5) A simultaneous optimisation of control rules and
membership functions of fuzzy sets is realised.

One drawback of the current work lies in the de-
termination of the upper limits of control rules. When
the upper limits are supposed to be too small, no satis-
factory solution can be found. On the other side, a too
“generous” estimation means a chromosome length
much longer than necessary, so that the search space
for the GA will become extremely large. Heuristic
knowledge or experiences play a key role in making
a favourable estimation about the suKcient amount
of rules to achieve the control goal. Further research
will be concentrated on developing a GA with variable
length of chromosomes to enable automatic identi7-
cation of the number of rules required without a priori
information.
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