PARIS - Practical Probabilistic Timing Analysis of Real-Time Systems



Start date:


End date:


Despite many years of research in the real-time systems research community, no practically useful probabilistic timing analysis exists today. In this project we aim to overcome this situation by addressing key challenges inherent in the restricting assumptions of existing analysis. These challenges will be approached from a new direction compared to what has been tried before, resolving complicating circumstances inherent in dependencies among system components. Novel run-time mechanisms will be developed to better support both probabilistic timing and performance guarantees.

The project is organized in 3 work packages targeting component- and system-level modeling, related analysis, and runtime mechanisms, respectively. Solutions will be developed, integrated and evaluated, both in the laboratory and in more realistic settings together with industrial partners.

The key motivation for probabilistic analysis is that it provides means for a more cost conscious and balanced allocation of system resources. Since other system components may fail with a higher probability than the processing resources - why design the processing resources for a scenario that is unlikely to occur? The proposed new run-time mechanisms and probabilistic timing analysis techniques have, by providing sufficient level of guarantees without overprovisioning resources, a potential to significantly advance probabilistic real-time systems research as well as adoption of real-time systems research in industry.

First NameLast NameTitle
Thomas Nolte Professor

Thomas Nolte, Professor

Room: U3-068
Phone: +46-21-103178