You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Schedulability Analysis of Fixed Priority Systems using Timed Automata

Authors:

Elena Fersman , Leonid Mokrushin , Paul Pettersson, Wang Yi

Note:

Keywords: Real time systems; Schedulability analysis; Timed automata; Modelling and verification; Tool

Publication Type:

Journal article

Venue:

Theoretical Computer Science

Publisher:

Elsevier


Abstract

In classic scheduling theory, real-time tasks are usually assumed to be periodic, i.e. tasks are released and computed with fixed rates periodically. To relax the stringent constraints on task arrival times, we propose to use timed automata to describe task arrival patterns. In a previous work, it is shown that the general schedulability checking problem for such models is a reachability problem for a decidable class of timed automata extended with subtraction. Unfortunately, the number of clocks needed in the analysis is proportional to the maximal number of schedulable task instances associated with a model, which is in many cases huge. In this paper, we show that for fixed-priority scheduling strategy, the schedulability checking problem can be solved using standard timed automata with two extra clocks in addition to the clocks used in the original model to describe task arrival times. The analysis can be done in a similar manner to response time analysis in classic Rate-Monotonic Analysis (RMA). The result is further extended to systems with data-dependent control, in which the release time of a task may depend on the time-point at which other tasks finish their execution. For the case when the execution times of tasks are constants, we show that the schedulability problem can be solved using n+1 extra clocks, where n is the number of tasks. The presented analysis techniques have been implemented in the Times tool. For systems with only periodic tasks, the performance of the tool is comparable with tools implementing the classic RMA technique based on equation-solving, without suffering from the exponential explosion in the number of tasks.

Bibtex

@article{Fersman1035,
author = {Elena Fersman and Leonid Mokrushin and Paul Pettersson and Wang Yi},
title = {Schedulability Analysis of Fixed Priority Systems using Timed Automata},
note = {Keywords: Real time systems; Schedulability analysis; Timed automata; Modelling and verification; Tool },
volume = {354},
number = {2},
pages = {301--317},
month = {March},
year = {2006},
journal = {Theoretical Computer Science},
publisher = {Elsevier},
url = {http://www.es.mdh.se/publications/1035-}
}