You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Fault Diagnosis of Industrial Machines Using Sensor Signals and Case-Based Reasoning

Fulltext:


Authors:


Research group:


Publication Type:

Doctoral Thesis

Publisher:

Mälardalen University Press


Abstract

Industrial machines sometimes fail to operate as intended. Such failures can be more or less severe depending on the kind of machine and the circumstances of the failure. E.g. the failure of an industrial robot can cause a hold-up of an entire assembly line costing the affected company large amounts of money each minute on hold. Research is rapidly moving forward in the area of artificial intelligence providing methods for efficient fault diagnosis of industrial machines. The nature of fault diagnosis of industrial machines lends itself naturally to case-based reasoning. Case-based reasoning is a method in the discipline of artificial intelligence based on the idea of assembling experience from problems and their solutions as ”cases” for reuse in solving future problems. Cases are stored in a case library, available for retrieval and reuse at any time. By collecting sensor data such as acoustic emission and current measurements from a machine and representing this data as the problem part of a case and consequently representing the diagnosed fault as the solution to this problem, a complete series of the events of a machine failure and its diagnosed fault can be stored in a case for future use.

Bibtex

@phdthesis{Olsson1513,
author = {Ella Olsson},
title = {Fault Diagnosis of Industrial Machines Using Sensor Signals and Case-Based Reasoning},
number = {76},
month = {August},
year = {2009},
school = {M{\"a}lardalen University Press},
url = {http://www.es.mdh.se/publications/1513-}
}