You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Fault Tolerant Scheduling on Control Area Network (CAN)

Fulltext:


Publication Type:

Conference/Workshop Paper

Venue:

IEEE International Workshop on Object/component/service-oriented Real-time Networked Ultra-dependable Systems

Publisher:

IEEE


Abstract

Dependable communications is becoming a critical factor due to the pervasive usage of networked embedded systems that increasingly interact with human lives in one way or the other in many real-time applications. Though many smaller systems are providing dependable services employing uniprocesssor solutions, stringent fault containment strategies etc., these practices are fast becoming inadequate due to the prominence of COTS in hardware and component based development(CBD) in software as well as the increased focus on building ’system of systems’. Hence the repertoire of design paradigms, methods and tools available to the developers of distributed real-time systems needs to be enhanced in multiple directions and dimensions. In future scenarios, potentially a network needs to cater to messages of multiple criticality levels (and hence varied redundancy requirements) and scheduling them in a fault tolerant manner becomes an important research issue. We address this problem in the context of Controller Area Network (CAN), which is widely used in automotive and automation domains, and describe a methodology which enables the provision of appropriate scheduling guarantees. The proposed approach involves definition of fault-tolerant windows of execution for critical messages and the derivation of message priorities based on earliest deadline first (EDF).

Bibtex

@inproceedings{Aysan1788,
author = {H{\"u}seyin Aysan and Radu Dobrin and Sasikumar Punnekkat},
title = {Fault Tolerant Scheduling on Control Area Network (CAN)},
month = {May},
year = {2010},
booktitle = {IEEE International Workshop on Object/component/service-oriented Real-time Networked Ultra-dependable Systems },
publisher = {IEEE},
url = {http://www.es.mdu.se/publications/1788-}
}