You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Probabilistic Preemption Control using Frequency Scaling for Sporadic Real-time Tasks

Fulltext:


Publication Type:

Conference/Workshop Paper

Venue:

The 7th IEEE International Symposium on Industrial Embedded Systems


Abstract

Preemption related costs are major sources of unpredictability in the task execution times in a real-time system. We examine the possibility of using CPU frequency scaling to control the preemption behavior of real-time sporadic tasks scheduled using a preemptive Fixed Priority Scheduling (FPS) policy. Our combined offline-online method provides probabilistic preemption control guarantees by making use of the release time probabilities of the sporadic tasks. The offline phase derives the probability related deviation from the minimum inter-arrival time of tasks. The online algorithm uses this information to calculate appropriate CPU frequencies that guarantees non-preemptive task executions while preserving the overall system schedulability. The online algorithm has a linear complexity and does not lead to significant implementation overheads. Our evaluations demonstrate the effectiveness of the method as well as the possibility of energy-preemption trade offs. Even though we have considered FPS, our method can easily be extended to dynamic priority scheduling schemes.

Bibtex

@inproceedings{Thekkilakattil2444,
author = {Abhilash Thekkilakattil and Radu Dobrin and Sasikumar Punnekkat},
title = {Probabilistic Preemption Control using Frequency Scaling for Sporadic Real-time Tasks},
month = {June},
year = {2012},
booktitle = {The 7th IEEE International Symposium on Industrial Embedded Systems},
url = {http://www.es.mdu.se/publications/2444-}
}