You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Case-Based Reasoning for Medical and Industrial Decision Support Systems

Publication Type:

Book chapter

Venue:

Successful Case-based Reasoning Applications

Publisher:

Springer-Verlag, Germany


Abstract

The amount of medical and industrial experience and knowledge is rapidly growing and it is almost impossible to be up to date with everything. The demand of decision support system (DSS) is especially important in domains where experience and knowledge grow rapidly. However, traditional approaches to DSS are not always easy to adapt to a flow of new experience and knowledge and may also show a limitation in areas with a weak domain theory. This chapter explores the functionalities of Case-Based Reasoning (CBR) to facilitate experience reuse both in clinical and in industrial decision making tasks. Examples from the field of stress medicine and condition monitoring in industrial robots are presented here to demonstrate that the same approach assists both for clinical applications as well as for decision support for engineers. In the both domains, DSS deals with sensor signal data and integrate other artificial intelligence techniques into the CBR system to enhance the performance in a number of different aspects. Textual information retrieval, Rule-based Reasoning (RBR), and fuzzy logic are combined together with CBR to offer decision support to clinicians for a more reliable and efficient management of stress. Agent technology and wavelet transformations are applied with CBR to diagnose audible faults on industrial robots and to package such a system. The performance of the CBR systems have been validated and have shown to be useful in solving such problems in both of these domains.

Bibtex

@incollection{Ahmed2890,
author = {Mobyen Uddin Ahmed and Shahina Begum and Ning Xiong and Peter Funk},
title = {Case-Based Reasoning for Medical and Industrial Decision Support Systems},
isbn = {978-3-642-14077-8},
editor = {Stefania Montani and Lakhmi Jain},
pages = {7--52},
month = {January},
year = {2010},
booktitle = {Successful Case-based Reasoning Applications},
publisher = {Springer-Verlag, Germany},
url = {http://www.es.mdh.se/publications/2890-}
}