You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Prediction of fault count data using genetic programming

Fulltext:


Publication Type:

Conference/Workshop Paper

Venue:

12th IEEE International Multitopic Conference

DOI:

10.1109/INMIC.2008.4777762


Abstract

Software reliability growth modeling helps in deciding project release time and managing project resources. A large number of such models have been presented in the past. Due to the existence of many models, the models’ inherent complexity, and their accompanying assumptions; the selection of suitable models becomes a challenging task. This paper presents empirical results of using genetic programming (GP) for modeling software reliability growth based on weekly fault count data of three different industrial projects. The goodness of fit (adaptability) and predictive accuracy of the evolved model is measured using five different measures in an attempt to present a fair evaluation. The results show that the GP evolved model has statistically significant goodness of fit and predictive accuracy

Bibtex

@inproceedings{Afzal3059,
author = {Wasif Afzal and Richard Torkar and Robert Feldt},
title = { Prediction of fault count data using genetic programming},
month = {December},
year = {2008},
booktitle = {12th IEEE International Multitopic Conference},
url = {http://www.es.mdu.se/publications/3059-}
}