You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Search-based prediction of fault-slip-through in large software projects

Publication Type:

Conference/Workshop Paper

Venue:

The 2nd International Symposium on Search Based Software Engineering

DOI:

10.1109/SSBSE.2010.19


Abstract

A large percentage of the cost of rework can be avoided by finding more faults earlier in a software testing process. Therefore, determination of which software testing phases to focus improvements work on, has considerable industrial interest. This paper evaluates the use of five different techniques, namely particle swarm optimization based artificial neural networks (PSO-ANN), artificial immune recognition systems (AIRS), gene expression programming (GEP), genetic programming (GP) and multiple regression (MR), for predicting the number of faults slipping through unit, function, integration and system testing phases. The objective is to quantify improvement potential in different testing phases by striving towards finding the right faults in the right phase. We have conducted an empirical study of two large projects from a telecommunication company developing mobile platforms and wireless semiconductors. The results are compared using simple residuals, goodness of fit and absolute relative error measures. They indicate that the four search-based techniques (PSOANN, AIRS, GEP, GP) perform better than multiple regression for predicting the fault-slip-through for each of the four testing phases. At the unit and function testing phases, AIRS and PSO-ANN performed better while GP performed better at integration and system testing phases. The study concludes that a variety of search-based techniques are applicable for predicting the improvement potential in different testing phases with GP showing more consistent performance across two of the four test phases.

Bibtex

@inproceedings{Afzal3060,
author = {Wasif Afzal and Richard Torkar and Robert Feldt and Greger Wikstr{\"a}nd},
title = {Search-based prediction of fault-slip-through in large software projects},
month = {September},
year = {2010},
booktitle = {The 2nd International Symposium on Search Based Software Engineering},
url = {http://www.es.mdu.se/publications/3060-}
}