You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

Predictable integration and reuse of executable real-time components


Publication Type:

Journal article


Journal of Systems and Software


Journal of Systems and Software



We present the concept of runnable virtual node (RVN) as a means to achieve predictable integration and reuse of executable real-time components in embedded systems. A runnable virtual node is a coarse-grained software component that provides functional and temporal isolation with respect to its environment. Its interaction with the environment is bounded both by a functional and a temporal interface, and the validity of its internal temporal behaviour is preserved when integrated with other components or when reused in a new environment. Our realization of RVN exploits the latest techniques for hierarchical scheduling to achieve temporal isolation, and the principles from component-based software-engineering to achieve functional isolation. It uses a two-level deployment process, i.e. deploying functional entities to RVNs and then deploying RVNs to physical nodes, and thus also gives development benefits with respect to composability, system integration, testing, and validation. In addition, we have implemented a server-based inter-RVN communication strategy to not only support the predictable integration and reuse properties of RVNs by keeping the communication code in a separate server, but also increasing the maintainability and flexibility to change the communication code without affecting the timing properties of RVNs. We have applied our approach to a case study, implemented in the ProCom component technology executing on top of a FreeRTOS-based hierarchical scheduling framework and present the results as a proof-of-concept.


author = {Rafia Inam and Jan Carlson and Mikael Sj{\"o}din and Jiř{\'\i} Kunčar},
title = {Predictable integration and reuse of executable real-time components},
volume = {114},
pages = {147--162},
month = {May},
year = {2014},
journal = {Journal of Systems and Software},
publisher = {Journal of Systems and Software},
url = {}