You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

A Review on Machine Learning Algorithms in Handling EEG Artifacts


Publication Type:

Conference/Workshop Paper


The Swedish AI Society (SAIS) Workshop


Brain waves obtained by Electroencephalograms (EEG) recording are an important research area in medical and health and brain computer interface (BCI). Due to the nature of EEG signal, noises and artifacts can contaminate it, which leads to a serious misinterpretation in EEG signal analysis. These contaminations are referred to as artifacts, which are signals of other than brain activity. Moreover, artifacts can cause significant miscalculation of the EEG measurements that reduces the clinical usefulness of EEG signals. Therefore, artifact handling is one of the cornerstones in EEG signal analysis. This paper provides a review of machine learning algorithms that have been applied in EEG artifacts handling such as artifacts identification and removal. In addition, an analysis of these methods has been reported based on their performance.


author = {Shaibal Barua and Shahina Begum},
title = {A Review on Machine Learning Algorithms in Handling EEG Artifacts},
month = {May},
year = {2014},
booktitle = {The Swedish AI Society (SAIS) Workshop},
url = {}