You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

Health Monitoring for Elderly: An Application Using Case-Based Reasoning and Cluster Analysis


Publication Type:

Journal article


ISRN Artificial Intelligence



This paper presents a framework to process and analyze data from a pulse oximeter which remotely measures pulse rate and blood oxygen saturation from a set of individuals. Using case-based reasoning (CBR) as the backbone to the framework, records are analyzed and categorized according to their similarity. Record collection has been performed using a personalized health profiling approach in which participants wore a pulse oximeter sensor for a fixed period of time and performed specific activities for pre-determined intervals. Using a variety of feature extraction methods in time, frequency, and time-frequency domains, as well as data processing techniques, the data is fed into a CBR system which retrieves most similar cases and generates an alarm according to the case outcomes. The system has been compared with an expert's classification, and a 90% match is achieved between the expert's and CBR classification. Again, considering the clustered measurements, the CBR approach classifies 93% correctly both for the pulse rate and oxygen saturation. Along with the proposed methodology, this paper provides a basis for which the system can be used in the analysis of continuous health monitoring and can be used as a suitable method in home/remote monitoring systems.


author = {Mobyen Uddin Ahmed and Hadi Banaee and Amy Loutfi },
title = {Health Monitoring for Elderly: An Application Using Case-Based Reasoning and Cluster Analysis},
volume = {2013},
number = {2013},
pages = {1--11},
month = {May},
year = {2013},
journal = {ISRN Artificial Intelligence },
url = {}