You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Descriptive Modelling of Clinical Conditions with Data-driven Rule Mining in Physiological Data

Fulltext:


Authors:


Publication Type:

Conference/Workshop Paper

Venue:

8th International Conference on Health Informatics


Abstract

This paper presents an approach to automatically mine rules in time series data representing physiological parameters in clinical conditions. The approach is fully data driven, where prototypical patterns are mined for each physiological time series data. The generated rules based on the prototypical patterns are then described in a textual representation which captures trends in each physiological parameter and their relation to the other physiological data. In this paper, a method for measuring similarity of rule sets is introduced in order to validate the uniqueness of rule sets. This method is evaluated on physiological records from clinical classes in the MIMIC online database such as angina, sepsis, respiratory failure, etc.. The results show that the rule mining technique is able to acquire a distinctive model for each clinical condition, and represent the generated rules in a human understandable textual representation.

Bibtex

@inproceedings{Banaee3787,
author = {Hadi Banaee and Mobyen Uddin Ahmed and Amy Loutfi },
title = {Descriptive Modelling of Clinical Conditions with Data-driven Rule Mining in Physiological Data},
month = {January},
year = {2015},
booktitle = {8th International Conference on Health Informatics},
url = {http://www.es.mdu.se/publications/3787-}
}