You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Supervised Machine Learning Algorithms to Diagnose Stress for Vehicle Drivers Based on Physiological Sensor Signals

Publication Type:

Conference/Workshop Paper

Venue:

12th International Conference on Wearable Micro and Nano Technologies for Personalized Health


Abstract

Machine learning algorithms play an important role in computer science research. Recent advancement in sensor data collection in clinical sciences lead to a complex, heterogeneous data processing and analysis for patient diagnosis and prognosis. Diagnosis and treatment of patients based on manual analysis of these sensor data is difficult and time consuming. Therefore, development of Knowledge-based systems to support clinicians in decision-making is important. However, it is necessary to perform experimental work to compare performances of different machine learning methods to help to select appropriate method for a specific characteristic of data sets. This paper compares classification performance of three popular machine learning methods i.e., case-based reasoning, neutral networks and support vector machine to diagnose stress of vehicle drivers using finger temperature and heart rate variability. The experimental results show that case-based reasoning outperforms other two methods in terms of classification accuracy. Case-based reasoning has achieved 80% and 86% accuracy to classify stress using finger temperature and heart rate variability. On contrary, both neural network and support vector machine have achieved less than 80% accuracy by using both physiological signals.

Bibtex

@inproceedings{Barua3876,
author = {Shaibal Barua and Shahina Begum and Mobyen Uddin Ahmed},
title = {Supervised Machine Learning Algorithms to Diagnose Stress for Vehicle Drivers Based on Physiological Sensor Signals},
month = {June},
year = {2015},
booktitle = {12th International Conference on Wearable Micro and Nano Technologies for Personalized Health},
url = {http://www.es.mdh.se/publications/3876-}
}