You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

A Fusion Based System for Physiological Sensor Signal Classification

Fulltext:


Publication Type:

Conference/Workshop Paper

Venue:

Medicinteknikdagarna 2014


Abstract

Today, usage of physiological sensor signals is essential in medical applications for diagnoses and classification of diseases. Clinicians often rely on information collected from several physiological sensor signals to diagnose a patient. However, sensor signals are mostly non-stationary and noisy, and single sensor signal could easily be contaminated by uncertain noises and interferences that could cause miscalculation of measurements and reduce clinical usefulness. Therefore, an apparent choice is to use multiple sensor signals that could provide more robust and reliable decision. Therefore, a physiological signal classification approach is presented based on sensor signal fusion and case-based reasoning. To classify Stressed and Relaxed individuals from physiological signals, data level and decision level fusion are performed and case-based reasoning is applied as classification algorithm. Five physiological sensor signals i.e., Heart Rate (HR), Finger Temperature (FT), Respiration Rate (RR), Carbon dioxide (CO2) and Oxygen Saturation (SpO2) are collected during the data collection phase. Here, data level fusion is performed using Multivariate Multiscale Entropy (MMSE) and extracted features are then used to build a case- library. Decision level fusion is performed on the features extracted using traditional time and frequency domain analysis. Case-Based Reasoning (CBR) is applied for the classification of the signals. The experimental result shows that the proposed system could classify Stressed or Relaxed individual 87.5% accurately compare to an expert in the domain. So, it shows promising result in the psychophysiological domain and could be possible to adapt this approach to other relevant healthcare systems.

Bibtex

@inproceedings{Begum3878,
author = {Shahina Begum and Shaibal Barua and Mobyen Uddin Ahmed and Peter Funk},
title = {A Fusion Based System for Physiological Sensor Signal Classification},
month = {October},
year = {2014},
booktitle = {Medicinteknikdagarna 2014},
url = {http://www.es.mdh.se/publications/3878-}
}