You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

Clustering based Approach for Automated EEG Artifacts Handling

Publication Type:

Conference/Workshop Paper


The 13th Scandinavian Conference on Artificial Intelligence


Electroencephalogram (EEG), measures the neural activity of the central nervous system, which is widely used in diagnosing brain activity and therefore plays a vital role in clinical and Brain-Computer Interface application. However, analysis of EEG signal is often complex since the signal recoding often contaminates with noises or artifacts such as ocular and muscle artifacts, which could mislead the diagnosis result. Therefore, to identify the artifacts from the EEG signal and handle it in a proper way is becoming an important and interesting research area. This paper presents an automated EEG artifacts handling approach, where it combines Independent Component Analysis (ICA) with a 2nd order clustering approach. Here, the 2nd order clustering approach combines the Hierarchical and Gaussian Picture Model clustering algorithm. The effectiveness of the proposed approach has been examined and observed on real EEG recording. According to result, the artifacts in the EEG signals are identified and removed successfully where the clean EEG signal shows acceptable considering visual inspection.


author = {Shaibal Barua and Shahina Begum and Mobyen Uddin Ahmed},
title = {Clustering based Approach for Automated EEG Artifacts Handling},
month = {November},
year = {2015},
booktitle = {The 13th Scandinavian Conference on Artificial Intelligence},
url = {}