You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

Scheduling Real-Time Packets with Non-Preemptive Regions on Priority-based NoCs

Publication Type:

Conference/Workshop Paper


The 22th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications


Network-on-Chip (NoC) is a preferred communi- cation medium for massively parallel platforms. Fixed-priority based scheduling using virtual-channels is one of the promising solutions to support real-time traffic in on-chip networks. Most of the existing NoC implementations which can support fixed- priority based scheduling use a flit-level preemptive scheduling. Under such a mechanism, preemptions can happen between the transmissions of successive flits. In this paper, we present a modified framework where the non-preemptive region of each NoC packet increases from a single flit. Using the proposed approach, the response times of certain packet flows can be reduced, which can thus improve the schedulability of the whole network. As a result, the utilization of NoCs can be improved by admitting more real-time traffic. Schedulability tests regarding the proposed framework are presented along with the proof of the correctness. Moreover, a number of experiments as well as a case study based on an automotive application have been generated, where we can clearly observe the improvement of our solution compared to the original flit-level preemptive NoC.


author = {Meng Liu and Matthias Becker and Moris Behnam and Thomas Nolte},
title = {Scheduling Real-Time Packets with Non-Preemptive Regions on Priority-based NoCs},
month = {August},
year = {2016},
booktitle = {The 22th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications},
url = {}