You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Driver’s State Monitoring: A Case Study on Big Data Analytics

Publication Type:

Conference/Workshop Paper

Venue:

The 3rd EAI International Conference on IoT Technologies for HealthCare


Abstract

Driver's distraction, inattention, sleepiness, stress, etc. are identified as causal factors of vehicle crashes and accidents. Today, we know that physiological signals are convenient and reliable measures of driver’s impairments. Heterogeneous sensors are generating vast amount of signals, which need to be handled and analyzed in a big data scenario. Here, we propose a big data analytics approach for driver state monitoring using heterogeneous data that are coming from multiple sources, i.e., physiological signals along with vehicular data and contextual information. These data are processed and analyzed to aware impaired vehicle drivers.

Bibtex

@inproceedings{Barua4501,
author = {Shaibal Barua and Shahina Begum and Mobyen Uddin Ahmed},
title = {Driver’s State Monitoring: A Case Study on Big Data Analytics},
month = {October},
year = {2016},
booktitle = {The 3rd EAI International Conference on IoT Technologies for HealthCare},
url = {http://www.es.mdh.se/publications/4501-}
}