You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Securing Clock Synchronization in Industrial Heterogeneous Networks

Fulltext:


Authors:


Research group:


Publication Type:

Licentiate Thesis

Publisher:

Mälardalen University Press


Abstract

Today, wireless solutions for industrial networks are becoming more and more appealing since they increase flexibility and enable the use of additional wireless sensors, but also bring such advantages as mobility and weight reduction. Wired networks, on the other hand, are reliable and, more importantly, already existing in most distributed control loops. Heterogeneous networks consisting of wireless as well as wired sub-networks are gaining attention as they combine the advantages of both approaches. However, wireless communication links are more vulnerable to security breaches because of their broadcast nature. For this reason, industrial heterogeneous networks require a new type of security solutions, since they have different system assets and security objectives. This thesis aims to secure industrial heterogeneous networks. Such networks have real-time requirements due to interaction with some physical process, and thus have a schedule with one or more deadlines for data delivery in order to comply with the timing requirements of the application. The necessity to follow the schedule implies that all network participants should share the same notion of time and be synchronized. This fact makes clock synchronization a fundamental asset for industrial networks. The first step towards developing a security framework for industrial heterogeneous networks with real-time requirements is therefore to investigate ways of breaching clock synchronization. Once the vulnerabilities of this asset have been identified, the next step is to propose solutions to detect malicious attacks and mitigate their influence. The thesis provides a vulnerability analysis of the asset synchronization based on the widely deployed IEEE 1588 standard, and identifies a possibility to break clock synchronization through a combination of a man-in-the-middle attack and a delay attack. This attack is appealing to an adversary as it can target any network requiring synchronization. Next, several mitigation techniques, such as a relaxed synchronization condition mode, delay bounding and using knowledge of existing environmental conditions, are identified, making the network more resilient against these kinds of attacks. Finally, a network monitor aiming to detect anomalies introduced by the adversary performing attacks targeting clock synchronization is proposed as a mean to detect the delay attack.

Bibtex

@misc{Lisova4634,
author = {Elena Lisova},
title = {Securing Clock Synchronization in Industrial Heterogeneous Networks},
isbn = {978-91-7485-258-5},
month = {May},
year = {2016},
publisher = {M{\"a}lardalen University Press},
url = {http://www.es.mdu.se/publications/4634-}
}