You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Towards Execution Time Prediction for Test Cases from Test Specification

Publication Type:

Conference/Workshop Paper

Venue:

43rd Euromicro Conference on Software Engineering and Advanced Applications


Abstract

Knowing the execution time of test cases is important to perform test scheduling, prioritization and progress monitoring. This short paper presents a novel approach for predicting the execution time of test cases based on test specifications and available historical data on previously executed test cases. Our approach works by extracting timing information (measured and maximum execution time) for various steps in manual test cases. This information is then used to estimate the maximum time for test steps that have not previously been executed, but for which textual specifications exist. As part of our approach natural language parsing of the specifications is performed to identify word combinations to check whether existing timing information on various test activities already exists or not. Finally, linear regression is used to predict the actual execution time for test cases. A proof-of-concept use-case at Bombardier transportation serves to evaluate the proposed approach.

Bibtex

@inproceedings{Tahvili4758,
author = {Sahar Tahvili and Mehrdad Saadatmand and Markus Bohlin and Wasif Afzal and Sharvathul Hasan Ameerjan},
title = {Towards Execution Time Prediction for Test Cases from Test Specification},
month = {August},
year = {2017},
booktitle = {43rd Euromicro Conference on Software Engineering and Advanced Applications},
url = {http://www.es.mdh.se/publications/4758-}
}