You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

A Generic Framework Facilitating Early Analysis of Data Propagation Delays in Multi-Rate Systems

Authors:


Note:

Invited Paper

Publication Type:

Conference/Workshop Paper

Venue:

The 23th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications


Abstract

A majority of multi-rate real-time systems are constrained by a multitude of timing requirements, in addition to the traditional deadlines on well-studied response times. This means, the timing predictability of these systems not only depends on the schedulability of certain task sets but also on the timely propagation of data through the chains of tasks from sensors to actuators. In the automotive industry, four different timing constraints corresponding to various data propagation delays are commonly specified on the systems. This paper identifies and addresses the source of pessimism as well as optimism in the calculations for one such delay, namely the reaction delay, in the state-of-the-art analysis that is already implemented in several industrial tools. Furthermore, a generic framework is proposed to compute all the four end-to-end data propagation delays, complying with the established delay semantics, in a scheduler and hardware-agnostic manner. This allows analysis of the system models already at early development phases, where limited system information is present. The paper further introduces mechanisms to generate job-level dependencies, a partial ordering of jobs, which need to be satisfied by any execution platform in order to meet the data propagation timing requirements. The job-level dependencies are first added to all task chains of the system and then reduced to its minimum required set such that the job order is not affected. Moreover, a necessary schedulability test is provided, allowing for varying the number of CPUs. The experimental evaluations demonstrate the tightness in the reaction delay with the proposed framework as compared to the existing state-of-the-art and practice solutions.

Bibtex

@inproceedings{Becker4804,
author = {Matthias Becker and Saad Mubeen and Dakshina Dasari and Moris Behnam and Thomas Nolte},
title = {A Generic Framework Facilitating Early Analysis of Data Propagation Delays in Multi-Rate Systems},
note = {Invited Paper},
month = {August},
year = {2017},
booktitle = {The 23th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications},
url = {http://www.es.mdh.se/publications/4804-}
}