You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

A genetic mission planner for solving temporal multi-agent problems with concurrent tasks

Research group:


Publication Type:

Conference/Workshop Paper

Venue:

International Conference on Swarms Intelligence


Abstract

In this paper, a centralized mission planner is presented. The planner employs a genetic algorithm for the optimization of the temporal planning problem. With the knowledge of agents’ specification and capabilities, as well as constraints and parameters for each task, the planner can produce plans that utilize multi-agent tasks, concurrency on agent level, and heterogeneous agents. Numerous optimization criteria that can be of use to the mission operator are tested on the same mission data set. Promising results and effectiveness of this approach are presented in the case study section.

Bibtex

@inproceedings{Miloradovic4849,
author = {Branko Miloradovic and Baran {\c{C}}{\"u}r{\"u}kl{\"u} and Mikael Ekstr{\"o}m},
title = {A genetic mission planner for solving temporal multi-agent problems with concurrent tasks},
month = {August},
year = {2017},
booktitle = {International Conference on Swarms Intelligence},
url = {http://www.es.mdh.se/publications/4849-}
}