You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

End-to-End Timing Analysis of Cause-Effect Chains in Automotive Embedded Systems

Authors:


Publication Type:

Journal article

Venue:

Journal of Systems Architecture

DOI:

https://doi.org/10.1016/j.sysarc.2017.09.004


Abstract

Automotive embedded systems are subjected to stringent timing requirements that need to be verified. One of the most complex timing requirement in these systems is the data age constraint. This constraint is specified on cause- effect chains and restricts the maximum time for the propagation of data through the chain. Tasks in a cause-effect chain can have different activation patterns and different periods, that introduce over- and under-sampling effects, which additionally aggravate the end-to-end timing analysis of the chain. Furthermore, the level of timing information available at various development stages (from modeling of the software architecture to the software implementation) varies a lot, the complete timing information is available only at the implementation stage. This uncertainty and limited timing information can restrict the end-to-end timing analysis of these chains. In this paper, we present methods to compute end-to-end delays based on different levels of system information. The characteristics of different communication semantics are further taken into account, thereby enabling timing analysis throughout the development process of such heterogeneous software systems. The presented methods are evaluated with extensive experiments. As a proof of concept, an industrial case study demonstrates the applicability of the proposed methods following a state-of-the-practice development process.

Bibtex

@article{Becker4877,
author = {Matthias Becker and Dakshina Dasari and Saad Mubeen and Moris Behnam and Thomas Nolte},
title = {End-to-End Timing Analysis of Cause-Effect Chains in Automotive Embedded Systems},
volume = {80},
number = {Supplement C},
month = {October},
year = {2017},
journal = {Journal of Systems Architecture},
url = {http://www.es.mdh.se/publications/4877-}
}