You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Deep Learning based Person Identification using Facial Images

Research group:


Publication Type:

Conference/Workshop Paper

Venue:

4th EAI International Conference on IoT Technologies for HealthCare


Abstract

Person identification is an important task for many applications for example in security. A person can be identified using finger print, vocal sound, facial image or even by DNA test. However, Person identification using facial images is one of the most popular technique which is non-contact and easy to implement and a research hotspot in the field of pattern recognition and machine vision. n this paper, a deep learning based Person identification system is proposed using facial images which shows higher accuracy than another traditional machine learning, i.e. Support Vector Machine.

Bibtex

@inproceedings{Rahman4886,
author = {Hamidur Rahman and Mobyen Uddin Ahmed and Shahina Begum},
title = {Deep Learning based Person Identification using Facial Images},
month = {October},
year = {2017},
booktitle = {4th EAI International Conference on IoT Technologies for HealthCare},
url = {http://www.es.mdh.se/publications/4886-}
}