You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

Supporting Beacon and Event-Driven Messages in Vehicular Platoons through Token-Based Strategies



Ali Balador, Elisabeth Uhlemann, Carlos T. Calafate , Juan-Carlos Cano

Research group:

Publication Type:

Journal article


Sensors Journal






Timely and reliable inter-vehicle communications is a critical requirement to support traffic safety applications, such as vehicle platooning. Furthermore, low-delay communications allow the platoon to react quickly to unexpected events. In this scope, having a predictable and highly effective medium access control (MAC) method is of utmost importance. However, the currently available IEEE 802.11p technology is unable to adequately address these challenges. In this paper, we propose a MAC method especially adapted to platoons, able to transmit beacons within the required time constraints, but with a higher reliability level than IEEE 802.11p, while concurrently enabling efficient dissemination of event-driven messages. The protocol circulates the token within the platoon not in a round-robin fashion, but based on beacon data age, i.e., the time that has passed since the previous collection of status information, thereby automatically offering repeated beacon transmission opportunities for increased reliability. In addition, we propose three different methods for supporting event-driven messages co-existing with beacons. Analysis and simulation results in single and multi-hop scenarios showed that, by providing non-competitive channel access and frequent retransmission opportunities, our protocol can offer beacon delivery within one beacon generation interval while fulfilling the requirements on low-delay dissemination of event-driven messages for traffic safety applications.


author = {Ali Balador and Elisabeth Uhlemann and Carlos T. Calafate and Juan-Carlos Cano},
title = {Supporting Beacon and Event-Driven Messages in Vehicular Platoons through Token-Based Strategies},
editor = {Pietro Manzoni},
volume = {18},
number = {4},
pages = {1--18},
month = {March},
year = {2018},
journal = {Sensors Journal},
publisher = {MDPI},
url = {}