You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

Contracts-Based Maintenance of Safety Cases



Publication Type:

Doctoral Thesis


Safety critical systems are those systems whose failure could result in loss of life, significant property damage, or damage to the environment. System safety is a major property that shall be adequately assured to avoid any severe outcomes in safety critical systems. Safety assurance should provide justified confidence that all potential risks due to system failures are either eliminated or acceptably mitigated. System developers in many domains (e.g., automotive, avionics, railways) should provide convincing arguments regarding the safe performance of their systems to a national or international regulatory authority and obtain approvals before putting the system into service. Building `Safety cases' is a proven technique to argue about and communicate systems' safety and it has become a common practice in many safety critical system domains. System developers use safety cases to articulate claims about how systems meet their safety requirements and objectives, collect and document items of evidence, and construct a safety argument to show how the available items of evidence support the claims.Safety critical systems are evolutionary and constantly subject to preventive, perfective, corrective or adaptive changes during both the development and operational phases. Changes to any part of those systems can undermine the confidence in safety since changes can refute articulated claims about safety or challenge the supporting evidence on which this confidence relies. Hence, safety cases need to be built as living documents that should always be maintained to justify the safety status of the associated system and evolve as these systems evolve. However, building safety cases are costly since they require a significant amount of time and efforts to define the safety objectives, generate the required evidence and conclude the underlying logic behind the safety case arguments. Safety cases document highly dependent elements such as safety goals, assumptions and evidence. Seemingly minor changes may have a major impact. Changes to a system or its environment can necessitate a costly and painstaking impact analysis for systems and their safety cases. In addition, changes may require system developers to generate completely new items of evidence by repeating the verification activities. Therefore, changes can exacerbate the cost of producing and maintaining safety cases. Safety contracts have been proposed as a means for helping to manage changes. There have been works that discuss the usefulness of contracts for reusability and maintainability. However, there has been little attention on how to derive them and how exactly they can be utilised for system or safety case maintenance.The main goal of this thesis is to support the change impact analysis as a key factor to enhance the maintainability of safety cases. We focus on utilising safety contracts to achieve this goal. To address this, we study how safety contracts can support essential factors for any useful change management process, such as (1) identifying the impacted elements and those that are not impacted, (2) minimising the number of impacted safety case elements, and (3) reducing the work needed to make the impacted safety case elements valid again. The preliminary finding of our study reveals that using safety contracts can be promising to develop techniques and processes to facilitate safety case maintenance. The absence of safety case maintenance guidelines from safety standards and the lack of systematic and methodical maintenance techniques have motivated the work of this thesis. Our work is presented through a set of developed and assessed techniques, where these techniques utilise safety contracts to achieve the overall goal by various contributions. We begin by a framework for evaluation of the impact of change on safety critical systems and safety cases. Through this, we identify and highlight the most sensitive system components to a particular change. We propose new ways to associate system design elements with safety case arguments to enable traceability. How to identify and reduce the propagation of change impact is addressed subsequently. Our research also uses safety contracts to enable through-life safety assurance by monitoring and detecting any potential mismatch between the design safety assumptions and the actual behaviour of the system during its operational phase. More specifically, we use safety contracts to capture thresholds of selected safety requirements and compare them with the runtime related data (i.e., operational data) to continuously assess and evolve the safety arguments. In summary, our proposed techniques pave the way for cost-effective maintenance of safety cases upon preventive, perfective, corrective or adaptive changes in safety critical systems thus helping better decision support for change impact analysis.


author = {Omar Jaradat},
title = {Contracts-Based Maintenance of Safety Cases},
isbn = {978-91-7485-417-6},
month = {November},
year = {2018},
school = {M{\\"{a}}lardalen University},
url = {}