You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Multi-Criteria Optimization of System Integration Testing

Fulltext:


Authors:


Publication Type:

Doctoral Thesis


Abstract

Optimizing software testing process has received much attention over the last few decades. Test optimization is typically seen as a multi-criteria decision making problem. One aspect of test optimization involves test selection, prioritization and execution scheduling. Having an efficient test process can result in the satisfaction of many objectives such as cost and time minimization. It can also lead to on-time delivery and a better quality of the final software product. To achieve the goal of test efficiency, a set of criteria, having an impact on the test cases, need to be identified. The analysis of several industrial case studies and also state of the art in this thesis, indicate that the dependency between integration test cases is one such criterion, with a direct impact on the test execution results. Other criteria of interest include requirement coverage and test execution time. In this doctoral thesis, we introduce, apply and evaluate a set of approaches and tools for test execution optimization at industrial integration testing level in embedded software development. Furthermore, ESPRET (Estimation and Prediction of Execution Time) and sOrTES (Stochastic Optimizing of Test Case Scheduling) are our proposed supportive tools for predicting the execution time and the scheduling of manual integration test cases, respectively. All proposed methods and tools in this thesis, have been evaluated at industrial testing projects at Bombardier Transportation (BT) in Sweden. As a result of the scientific contributions made in this doctoral thesis, employing the proposed approaches has led to an improvement in terms of reducing redundant test execution failures of up to 40% with respect to the current test execution approach at BT. Moreover, an increase in the requirements coverage of up to 9.6% is observed at BT. In summary, the application of the proposed approaches in this doctoral thesis has shown to give considerable gains by optimizing test schedules in system integration testing of embedded software development.

Bibtex

@phdthesis{Tahvili5308,
author = {Sahar Tahvili},
title = {Multi-Criteria Optimization of System Integration Testing},
isbn = {978-91-7485-414-5},
month = {December},
year = {2018},
school = {M{\\"{a}}lardalen University},
url = {http://www.es.mdh.se/publications/5308-}
}