You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

Fogification of Industrial Robotic Systems: Research Challenges


Publication Type:

Conference/Workshop Paper


Workshop on Fog Computing and the Internet of Things 2019


To meet the demands of future automation systems, the architecture of traditional control systems such as the industrial robotic systems needs to evolve and new architectural paradigms need to be investigated. While cloud-based platforms provide services such as computational resources on demand, they do not address the requirements of real-time performance expected by control applications. Fog computing is a promising new architectural paradigm that complements the cloud-based platform by addressing its limitations. In this paper, we analyse the existing robot system architecture and propose a fog-based solution for industrial robotic systems that addresses the needs of future automation systems. We also propose the use of Time-Sensitive Networking (TSN) services for real-time communication and OPC-UA for information modelling within this architecture. Additionally, we discuss the main research challenges associated with the proposed architecture.


author = {Shaik Salman and Vaclav Struhar and Alessandro Papadopoulos and Moris Behnam and Thomas Nolte},
title = {Fogification of Industrial Robotic Systems: Research Challenges},
month = {April},
year = {2019},
booktitle = {Workshop on Fog Computing and the Internet of Things 2019},
url = {}