You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Towards a Two-layer Framework for Verifying Autonomous Vehicles

Publication Type:

Conference/Workshop Paper

Venue:

11th Annual NASA Formal Methods Symposium


Abstract

Autonomous vehicles rely heavily on intelligent algorithms for path planning and collision avoidance, and their functionality and dependability could be ensured through formal verification. To facilitate the verification, it is beneficial to decouple the static high-level planning from the dynamic functions like collision avoidance. In this paper, we propose a conceptual two-layer framework for verifying autonomous vehicles, which consists of a static layer and a dynamic layer. We focus concretely on modeling and verifying the dynamic layer using hybrid automata and UPPAAL SMC, where a continuous movement of the vehicle as well as collision avoidance via a dipole flow field algorithm are considered. This framework achieves decoupling by separating the verification of the vehicle's autonomous path planning from that of the vehicle autonomous operation in a continuous dynamic environment. To simplify the modeling process, we propose a pattern-based design method, where patterns are expressed as hybrid automata. We demonstrate the applicability of the dynamic layer of our framework on an industrial prototype of an autonomous wheel loader.

Bibtex

@inproceedings{Gu5450,
author = {Rong Gu and Raluca Marinescu and Cristina Seceleanu and Kristina Lundqvist},
title = {Towards a Two-layer Framework for Verifying Autonomous Vehicles},
month = {May},
year = {2019},
booktitle = {11th Annual NASA Formal Methods Symposium},
url = {http://www.es.mdh.se/publications/5450-}
}