You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

Machine Learning-Assisted Performance Testing


Publication Type:

Conference/Workshop Paper


ESEC/FSE ACM Student Research Competition


Automated testing activities like automated test case generation imply a reduction in human effort and cost, with the potential to impact the test coverage positively. If the optimal policy, i.e., the course of actions adopted, for performing the intended test activity could be learnt by the testing system, i.e., a smart tester agent, then the learnt policy could be reused in analogous situations which leads to even more efficiency in terms of required efforts. Performance testing under stress execution conditions, i.e., stress testing, which involves providing extreme test conditions to find the performance breaking points, remains a challenge, particularly for complex software systems. Some common approaches for generating stress test conditions are based on source code or system model analysis, or use-case based design approaches. However, source code or precise system models might not be easily available for testing. Moreover, drawing a precise performance model is often difficult, particularly for complex systems. In this research, I have used model-free reinforcement learning to build a self-adaptive autonomous stress testing framework which is able to learn the optimal policy for stress test case generation without having a model of the system under test. The conducted experimental analysis shows that the proposed smart framework is able to generate the stress test conditions for different software systems efficiently and adaptively without access to performance models.


@inproceedings{Helali Moghadam5555,
author = {Mahshid Helali Moghadam},
title = {Machine Learning-Assisted Performance Testing},
month = {August},
year = {2019},
booktitle = {ESEC/FSE ACM Student Research Competition},
url = {}