You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Executable Modelling for Highly Parallel Accelerators

Fulltext:


Publication Type:

Conference/Workshop Paper

Venue:

Workshop on Modelling Language Engineering and Execution at IEEE/ACM 22nd International Conference on Model Driven Engineering Languages and Systems


Abstract

High-performance embedded computing is developing rapidly since applications in most domains require a large and increasing amount of computing power. On the hardware side, this requirement is met by the introduction of heterogeneous systems, with highly parallel accelerators that are designed to take care of the computation-heavy parts of an application. There is today a plethora of accelerator architectures, including GPUs, many-cores, FPGAs, and domain-specific architectures such as AI accelerators. They all have their own programming models, which are typically complex, low-level, and involve explicit parallelism. This yields error-prone software that puts the functional safety at risk, unacceptable for safety-critical embedded applications. In this position paper we argue that high-level executable modelling languages tailored for parallel computing can help in the software design for high performance embedded applications. In particular, we consider the data-parallel model to be a suitable candidate, since it allows very abstract parallel algorithm specifications free from race conditions. Moreover, we promote the Action Language for fUML (and thereby fUML) as suitable host language.

Bibtex

@inproceedings{Addazi5643,
author = {Lorenzo Addazi and Federico Ciccozzi and Bj{\"o}rn Lisper},
title = {Executable Modelling for Highly Parallel Accelerators},
month = {September},
year = {2019},
booktitle = {Workshop on Modelling Language Engineering and Execution at IEEE/ACM 22nd International Conference on Model Driven Engineering Languages and Systems},
url = {http://www.es.mdh.se/publications/5643-}
}