You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Construction of Fuzzy Knowledge Bases Incorporating Feature Selection

Fulltext:


Publication Type:

Journal article

Venue:

Journal of Soft Computing - A Fusion of Foundations, Methodologies and Applications

Publisher:

Spring Verlag


Abstract

Constructing concise fuzzy rule bases from databases containing many features present an important yet challenging goal in the current researches of fuzzy rule-based systems. Utilization of all available attributes is not realistic due to the “curse of dimensionality” with respect to the rule number as well as the overwhelming computational costs. This paper proposes a general framework to treat this issue, which is composed of feature selection as the first stage and fuzzy modeling as the second stage. Feature selection serves to identify significant attributes to be employed as inputs of the fuzzy system. The choice of key features for inclusion is equivalent to the problem of searching for hypotheses that can be numerically assessed by means of case-based reasoning. In fuzzy modeling, the genetic algorithm is applied to explore general premise structure and optimize fuzzy set membership functions at the same time. Finally, the merits of this work have been demonstrated by the experiment results on a real data set.

Bibtex

@article{Xiong592,
author = {Ning Xiong and Peter Funk},
title = {Construction of Fuzzy Knowledge Bases Incorporating Feature Selection},
volume = {10},
number = {9},
pages = {796--804},
month = {July},
year = {2006},
journal = {Journal of Soft Computing - A Fusion of Foundations, Methodologies and Applications},
publisher = {Spring Verlag},
url = {http://www.es.mdu.se/publications/592-}
}