You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

LSHADE with Semi-Parameter Adaptation Hybrid with CMA-ES for Solving CEC 2017 Benchmark Problems

Authors:

Ali Wagdy Mohamed , Anas A. Hadi , Anas Fattouh, Kamal M. Jambi

Publication Type:

Conference/Workshop Paper

Venue:

IEEE Congress on Evolutionary Computation 2017

DOI:

https://doi.org/10.1109/CEC.2017.7969307


Abstract

To improve the optimization performance of LSHADE algorithm, an alternative adaptation approach for the selection of control parameters is proposed. The proposed algorithm, named LSHADE-SPA, uses a new semi-parameter adaptation approach to effectively adapt the values of the scaling factor of the Differential evolution algorithm. The proposed approach consists of two different settings for two control parameters F and Cr. The benefit of this approach is to prove that the semi-adaptive algorithm is better than pure random algorithm or fully adaptive or self-adaptive algorithm. To enhance the performance of our algorithm, we also introduced a hybridization framework named LSHADE-SPACMA between LSHADE-SPA and a modified version of CMA-ES. The modified version of CMA-ES undergoes the crossover operation to improve the exploration capability of the proposed framework. In LSHADE-SPACMA both algorithms will work simultaneously on the same population, but more populations will be assigned gradually to the better performance algorithm. In order to verify and analyze the performance of both LSHADE-SPA and LSHADESPACMA, Numerical experiments on a set of 30 test problems from the CEC2017 benchmark for 10, 30, 50 and 100 dimensions, including a comparison with LSHADE algorithm are executed. Experimental results indicate that in terms of robustness, stability, and quality of the solution obtained, of both LSHADE-SPA and LSHADE-SPACMA are better than LSHADE algorithm, especially as the dimension increases.

Bibtex

@inproceedings{Mohamed5972,
author = {Ali Wagdy Mohamed and Anas A. Hadi and Anas Fattouh and Kamal M. Jambi},
title = {LSHADE with Semi-Parameter Adaptation Hybrid with CMA-ES for Solving CEC 2017 Benchmark Problems},
month = {June},
year = {2017},
booktitle = {IEEE Congress on Evolutionary Computation 2017},
url = {http://www.es.mdh.se/publications/5972-}
}