You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Performance and Characteristics of Wearable Sensor Systems Discriminating and Classifying Older Adults According to Fall Risk: A Systematic Review

Fulltext:


Research group:


Publication Type:

Article, review

Venue:

Sensors, SI: Sensor Technology for Fall Prevention

DOI:

https://doi.org/10.3390/s21175863


Abstract

Sensor-based fall risk assessment (SFRA) utilizes wearable sensors for monitoring individuals’ motions in fall risk assessment tasks. Previous SFRA reviews recommend methodological improvements to better support the use of SFRA in clinical practice. This systematic review aimed to investigate the existing evidence of SFRA (discriminative capability, classification performance) and methodological factors (study design, samples, sensor features, and model validation) contributing to the risk of bias. The review was conducted according to recommended guidelines and 33 of 389 screened records were eligible for inclusion. Evidence of SFRA was identified: several sensor features and three classification models differed significantly between groups with different fall risk (mostly fallers/non-fallers). Moreover, classification performance corresponding the AUCs of at least 0.74 and/or accuracies of at least 84% were obtained from sensor features in six studies and from classification models in seven studies. Specificity was at least as high as sensitivity among studies reporting both values. Insufficient use of prospective design, small sample size, low insample inclusion of participants with elevated fall risk, high amounts and low degree of consensus in used features, and limited use of recommended model validation methods were identified in the included studies. Hence, future SFRA research should further reduce risk of bias by continuously improving methodology.

Bibtex

@article{Kristoffersson6280,
author = {Annica Kristoffersson and Jiaying Du and Maria Ehn},
title = {Performance and Characteristics of Wearable Sensor Systems Discriminating and Classifying Older Adults According to Fall Risk: A Systematic Review},
volume = {21},
number = {17},
month = {August},
year = {2021},
journal = {Sensors, SI: Sensor Technology for Fall Prevention},
url = {http://www.es.mdh.se/publications/6280-}
}