You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

TAS:Ternarized Neural Architecture Search for Resource-Constrained Edge Devices

Fulltext:


Publication Type:

Conference/Workshop Paper

Venue:

Design, Automation and Test in Europe Conference

Publisher:

IEEE


Abstract

Ternary Neural Networks (TNNs) compress network weights and activation functions into 2-bit representation resulting in remarkable network compression and energy efficiency. However, there remains a significant gap in accuracy between TNNs and full-precision counterparts. Recent advances in Neural Architectures Search (NAS) promise opportunities in automated optimization for various deep learning tasks. Unfortunately, this area is unexplored for optimizing TNNs. This paper proposes TAS, a framework that drastically reduces the accuracy gap between TNNs and their full-precision counterparts by integrating quantization into the network design. We experienced that directly applying NAS to the ternary domain provides accuracy degradation as the search settings are customized for full-precision networks. To address this problem, we propose (i) a new cell template for ternary networks with maximum gradient propagation; and (ii) a novel learnable quantizer that adaptively relaxes the ternarization mechanism from the distribution of the weights and activation functions. Experimental results reveal that TAS delivers 2.64% higher accuracy and 2.8x memory saving over competing methods with the same bit-width resolution on the CIFAR-10 dataset. These results suggest that TAS is an effective method that paves the way for the efficient design of the next generation of quantized neural networks.

Bibtex

@inproceedings{Loni6351,
author = {Mohammad Loni and Hamid Mousavi and Mohammad Riazati and Masoud Daneshtalab and Mikael Sj{\"o}din},
title = {TAS:Ternarized Neural Architecture Search for Resource-Constrained Edge Devices },
month = {March},
year = {2022},
booktitle = {Design, Automation and Test in Europe Conference},
publisher = {IEEE},
url = {http://www.es.mdh.se/publications/6351-}
}