You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Novel Microwave Applicator Design for Tumor Detection Inside the Human Breast

Research group:


Publication Type:

Conference/Workshop Paper

Venue:

18th International Conference on Microwave and High-Frequency Applications


Abstract

A common problem in microwave imaging of human body parts is the creation of unwanted surface waves due to permittivity mismatch between the object under test (OUT) and the surrounding space. These waves propagate more easily along the surface of the OUT and can overshadow the desired signal from an inner inhomogeneity (e.g. a tumor). Submerging the OUT into a matching bolus liquid has proven to reduce surface waves, yet also to increase the overall signal attenuation. In this paper we present a novel applicator concept that can be used to effectively illuminate the human breast without the need for such a bolus liquid. Electromagnetic simulations show that the applicator creates almost no surface waves even if placed 1 mm away from a simplified breast model. An estimation of the applicator performance in a realistic measurement scenario is made using a detailed breast model from the UWCEM Numerical Breast Phantoms Repository in the simulation.

Bibtex

@inproceedings{Salomon6358,
author = {Christoph Salomon and Nikola Petrovic and Per Olov Risman},
title = {Novel Microwave Applicator Design for Tumor Detection Inside the Human Breast},
month = {September},
year = {2021},
booktitle = {18th International Conference on Microwave and High-Frequency Applications},
url = {http://www.es.mdu.se/publications/6358-}
}