You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

On the relationship between similar requirements and similar software

Fulltext:


Publication Type:

Journal article

Venue:

Requirements Engineering

Publisher:

Springer-Verlag

DOI:

10.1007/s00766-021-00370-4


Abstract

Recommender systems for requirements are typically built on the assumption that similar requirements can be used as proxies to retrieve similar software. When a stakeholder proposes a new requirement, natural language processing (NLP)-based similarity metrics can be exploited to retrieve existing requirements, and in turn, identify previously developed code. Several NLP approaches for similarity computation between requirements are available. However, there is little empirical evidence on their effectiveness for code retrieval. This study compares different NLP approaches, from lexical ones to semantic, deep-learning techniques, and correlates the similarity among requirements with the similarity of their associated software. The evaluation is conducted on real-world requirements from two industrial projects from a railway company. Specifically, the most similar pairs of requirements across two industrial projects are automatically identified using six language models. Then, the trace links between requirements and software are used to identify the software pairs associated with each requirements pair. The software similarity between pairs is then automatically computed with JPLag. Finally, the correlation between requirements similarity and software similarity is evaluated to see which language model shows the highest correlation and is thus more appropriate for code retrieval. In addition, we perform a focus group with members of the company to collect qualitative data. Results show a moderately positive correlation between requirements similarity and software similarity, with the pre-trained deep learning-based BERT language model with preprocessing outperforming the other models. Practitioners confirm that requirements similarity is generally regarded as a proxy for software similarity. However, they also highlight that additional aspects come into play when deciding software reuse, e.g., domain/project knowledge, information coming from test cases, and trace links. Our work is among the first ones to explore the relationship between requirements and software similarity from a quantitative and qualitative standpoint. This can be useful not only in recommender systems but also in other requirements engineering tasks in which similarity computation is relevant, such as tracing and change impact analysis.

Bibtex

@article{Abbas6368,
author = {Muhammad Abbas and Alessio Ferrari and Anas Shatnawi and Eduard Paul Enoiu and Mehrdad Saadatmand and Daniel Sundmark},
title = {On the relationship between similar requirements and similar software},
volume = { },
pages = {1--25},
month = {January},
year = {2022},
journal = {Requirements Engineering},
publisher = {Springer-Verlag},
url = {http://www.es.mdh.se/publications/6368-}
}