You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Modeling and Profiling of Aggregated Industrial Network Traffic

Fulltext:


Research group:


Publication Type:

Journal article

Venue:

Smart Manufacturing Networks for Industry 4.0


Abstract

The industrial network infrastructures are transforming to a horizontal architecture to enable data availability for advanced applications and enhance flexibility for integrating new technologies. The uninterrupted operation of the legacy systems needs to be ensured by safeguarding their requirements in network configuration and resource management. Network traffic modeling is essential in understanding the ongoing communication for resource estimation and configuration management. The presented work proposes a two-step approach for modeling aggregated traffic classes of brownfield installation. It first detects the repeated work-cycles and then aims to identify the operational states to profile their characteristics. The performance and influence of the approach are evaluated and validated in two experimental setups with data collected from an industrial plant in operation. The comparative results show that the proposed method successfully captures the temporal and spatial dynamics of the network traffic for characterization of various communication states in the operational work-cycles.

Bibtex

@article{Lavassani6371,
author = {Mehrzad Lavassani and Johan {\AA}kerberg and Mats Bj{\"o}rkman},
title = {Modeling and Profiling of Aggregated Industrial Network Traffic},
volume = {12},
month = {January},
year = {2022},
journal = {Smart Manufacturing Networks for Industry 4.0},
url = {http://www.es.mdh.se/publications/6371-}
}