You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Design and Experimental Evaluation of the Proactive Transmission of Replicated Frames Mechanism over Time-Sensitive Networking

Authors:

Ines Alvarez, Ignasi Furio , Julián Proenza , Manuel Barranco

Publication Type:

Journal article

Venue:

Sensors Journal

DOI:

https://doi.org/10.3390/s21030756


Abstract

In recent years the Time-Sensitive Networking (TSN) Task Group (TG) has been working on proposing a series of standards to provide Ethernet with hard real-time guarantees, online management of the traffic and fault tolerance mechanisms. In this way the TG expects to create the network technology of future novel applications with real-time and reliability requirements. TSN proposes using spatial redundancy to increase the reliability of Ethernet networks, but using spatial redundancy to tolerate temporary faults is not a cost-effective solution. For this reason, we propose to use time redundancy to tolerate temporary faults in the links of TSN-based networks. Specifically, we have proposed the Proactive Transmission of Replicated Frames (PTRF) mechanism, which consists in transmitting several copies of each frame in a preventive manner. In this article we present for the first time a detailed description of the mechanism, with the three different approaches we have designed. We also present the implementation of PTRF in a real TSN prototype. Furthermore, we carry out a qualitative comparison of the different approaches of the mechanism and we experimentally evaluate the approaches of the mechanism in a quantitative manner from three perspectives: the end-to-end delay, the jitter and the bandwidth consumption.

Bibtex

@article{Alvarez6439,
author = {Ines Alvarez and Ignasi Furio and Juli{\'a}n Proenza and Manuel Barranco},
title = {Design and Experimental Evaluation of the Proactive Transmission of Replicated Frames Mechanism over Time-Sensitive Networking},
volume = {18},
number = {4},
month = {January},
year = {2021},
journal = {Sensors Journal},
url = {http://www.es.mdu.se/publications/6439-}
}